Skip to main content

Advertisement

Log in

Geochemistry and petrogenesis of Ghohroud Igneous Complex (Urumieh–Dokhtar zone): evidence for Neotethyan subduction during the Neogene

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Oligo–Miocene Ghohroud granitoid is located in the north of Isfahan, in the Urumieh–Dokhtar magmatic arc (UDMA). The rock composition ranges from granodiorite to tonalite. Rocks mainly include quartz, plagioclase, and alkali feldspar with minor biotite and amphibole. Dacitic and basaltic rocks outcrop as dykes. Geochemical data show that these rocks are subalkaline, calc-alkaline, and metaluminous. Microgranular enclaves, sieve texture, oscillatory zoning in plagioclase, and clear roundness of quartz pieces demonstrated magma mixing. The magma has experienced fractional crystallization that has led to the presence of different petrological units. Large-ion lithophile element (LILE) and Pb enrichment is evidence of crustal contamination. Considering the clear negative anomaly of Nb and Ti, the magma has been formed in a volcanic arc environment. The geochemistry of major and rare earth elements reveals that initial magma has been formed by partial melting of lower crustal protoliths. An underplating magma can supply heat source for the dehydration melting of lower crust and generation of Ghohroud granitic melt by melting of a mafic source during the subduction of the Neotethyan oceanic plate and the Central Iran continental crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abbasi S, Tabatabaei Manesh SM, Karimi S, Parfenova OV (2014) Relative contributions of crust and mantle to generation of Oligo–Miocene medium-K calc-alkaline I-type granitoids in a subduction setting a case study from the Nabar Pluton, Central Iran. Petrology 223:310–328

    Article  Google Scholar 

  • Abdel-Rahman AM (1994) Nature of biotites from alkaline calc-alkaline and peraluminous magmas. J Petrol 352:525–541

    Article  Google Scholar 

  • Ahankob M (2003) Mineralogical and geochemical studies of the metamorphic aureole in Ghohroud granitoid intrusion body. M.Sc. thesis, University of Isfahan, Isfahan, Iran (in Persian)

  • Amidi SM, Emami MH, Michel R (1984) Alkaline character of Eocene volcanism in the middle part of central Iran and its geodynamic situation. Geol Rundsch 73:917–932

    Article  Google Scholar 

  • Anderson JL, Smith DR (1995) The effects of temperature and ƒO2 Al-in-hornblende barometer. Am Mineral 80:549–559

    Google Scholar 

  • Asiabanha A, Foden J (2012) Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran. Lithos 148:98–111

    Article  Google Scholar 

  • Ayati F, Yavuz F, Asadi Haroni H, Jeremy P, Richards JP, Jourdan F (2013) Petrology and geochemistry of calc-alkaline volcanic and subvolcanic rocks, Dalli porphyry copper–gold deposit, Markazi Province, Iran. Int Geol Rev 55(2):158–184

    Article  Google Scholar 

  • Badr A (2012) Petrographic and mineralogical studies of skarn granodiorite east Ghahrood, South East Ghamsar Isfahan. M.Sc. Thesis, University of Isfahan, Isfahan, Iran (in Persian)

  • Berberian F, Muir ID, Pankhurst RJ, Berberian M (1982) Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and central Iran. J Geol Soc 139:605–614

    Article  Google Scholar 

  • Brown GC, Thorp RS, Webb BPC (1984) The geochemical characteristic of granitoids in contrasting arcs and comments on magma source. J Geol Soc Lond 141:413–426

    Article  Google Scholar 

  • Cameron BI, Walker JA, Carr MJ, Patino LC, Matias O, Feigenson MD (2003) Flux versus decompression melting at stratovolcanos in southeastern Guatemala. J Volcanol Geotherm Res 119:21–50

    Article  Google Scholar 

  • Castro A (2014) The off-crust origin of granite batholiths. Geosci Front 5(1):63–75

    Article  Google Scholar 

  • Coltorti M, Bonadiman C, Gregoire M, O’Reilly SY, Powell W (2007) Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos 99:68–84

    Article  Google Scholar 

  • Condie KC (1994) Greenstones through time. In: Condie CK (ed) Archean crustal evolution. Elsevier, Amsterdam, pp 85–120

    Chapter  Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George Allen and Unwin, London

    Book  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock forming minerals. Longman, London

    Google Scholar 

  • Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran). J Asian Earth Sci 26:683–693

    Article  Google Scholar 

  • Ghorbani MR, Graham IT, Ghaderi M (2014) Oligocene–Miocene geodynamic evolution of the central part of Urumieh-Dokhtar Arc of Iran. Int Geol Rev 56(8):1039–1050

    Article  Google Scholar 

  • Gómez-Tuena A, Langmuir CH, Goldstein SL, Straub SM, Ortega-Gutiérrez F (2007) Geochemical evidence for slab melting in the Trans-Mexican volcanic belt. J Petrol 48:537–562

    Article  Google Scholar 

  • Gorton MP, Schandl ES (2000) From continents to island arcs: a geochemical index for tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can Mineral 38:1065–1073

    Article  Google Scholar 

  • Goswami B, Bhattacharyya C (2014) Petrogenesis of shoshonitic granitoids, eastern India: implications for the late Grenvillian post-collisional magmatism. Geosci Front 5(6):821–843

    Article  Google Scholar 

  • Harker A (1909) The natural history of igneous rocks. Methuen and Co., London

    Google Scholar 

  • Hassanzadeh J (1993) Metallogenic and tectonomagmatic events in the SE sector of the Cenozoic active continental margin of central Iran (Shahr e Babak area, Kerman Province). University of California, Los Angeles

  • Honarmand M, Rashidnejad Omran N, Corfu F, Emami MH, Nabatian G (2014) Geochronology and magmatic history of a calc-alkaline plutonic complex in the Urumieh–Dokhtar Magmatic Belt, Central Iran: zircon ages as evidence for two major plutonic episodes. Neues Jahrb Mineral Abh J Min Geochem 190(1):67–77

    Google Scholar 

  • Irvine TN, Baragar WEA (1971) A guide to the chemical classification of common rocks. Can J Earth Sci 8:523–548

    Article  Google Scholar 

  • Jafari A, Fazlnia A, Susan Jamei S (2014) Mafic enclaves in north of Urumieh plutonic complex: evidence of magma mixing and mingling, Sanandaj–Sirjan zone, NW Iran. Arab J Geosci 1–16

  • Kananian A, Sarjoughian F, Nadimi A, Ahmadian J, Ling W (2014) Geochemical characteristics of the Kuh-e Dom intrusion, Urumieh–Dokhtar magmatic arc (Iran): implications for source regions and magmatic evolution. J Asian Earth Sci 90:137–148

    Article  Google Scholar 

  • Karsli O, Chen BV, Aydin FS (2007) Geochemical and Sr–Nd–Pb isotopic compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos 98:67–96

    Article  Google Scholar 

  • Khodami M, Noghreyan M, Davoudian AR (2010) Geochemical constraints on the genesis of the volcanic rocks in the southeast of Isfahan area, Iran. Arab J Geosci 3(3):257–266

    Article  Google Scholar 

  • Koglin N, Kostopoulos D, Reischmann T (2009) Geochemistry, petrogenesis and tectonic setting of the Samothraki mafic suite, NE Greece: trace-element isotopic and zircon age constraints. Tectonophysics 473:53–68

    Article  Google Scholar 

  • Le Bas MJ (1962) The role of aluminum in igneous clinopyroxene with relation to their parentage. Am J Sci 260:267–288

    Article  Google Scholar 

  • Leake BE, Woolley AR, Birch WD, Burke EAJ, Ferraris G, Grice JD, Hawthorne FC, Kisch HJ, Krivovichev VG, Schumacher JC, Stephenson NCN, Whittaker EJW (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Am Mineral 89:883–887

    Google Scholar 

  • Lopéz S, Castro A (2001) Determination of the fluid absent solidus and super solidus phase relationships of MORB-derived amphibolites in the range 4–14 kbar. Am Mineral 86:1396–1403

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  Google Scholar 

  • Mirnejad H, Hassanzadeh J, Cousens BL, Taylor BE (2010) Geochemical evidence for deep mantle melting and lithospheric delamination as the origin of the inland Damavand volcanic rocks of northern Iran. J Volcanol Geotherm Res 198:288–296

    Article  Google Scholar 

  • Morimoto N, Fabrise J, Ferguson A, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxene. Mineral Mag 52:535–555

    Article  Google Scholar 

  • Nachit H, Abderrahmane I, El Hassan A, Mohcine BO (2005) Discrimination between primary magmatic biotites reequilibrated biotites and neoformed biotites. CR Geosci 337:1415–1420

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139:541–554

    Article  Google Scholar 

  • Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L (2008) Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106:380–398

    Article  Google Scholar 

  • Parlak O (2006) Geodynamic significance of granitoid magmatism in the southeast Anatolian orogen: geochemical and geochronogical evidence from Göksun-Afşin (Kahramanmaraş, Turkey) region. Int J Earth Sci 95:609–627

    Article  Google Scholar 

  • Patino Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origins of granitic magmas? In: Castro A, Fernandez C, Vigneresse JL (eds) Understanding granites: integrating new and classical techniques. Geological Society of London Special Publication 168:55–75

  • Pearce JA (1996) Sources and settings of granitic rocks. Episodes 19:120–125

    Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Article  Google Scholar 

  • Putirka K (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  • Radfar J (1993) Explanatory text of Kashan. Geological Quadrangle Map 1:100000, No. 6257. Geological Survey of Iran Tehran (in Persian)

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust_mantle recycling. J Petrol 36:891–931

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier/Pergamon, Oxford 3:1–64

  • Sarjoughian F, Kananian A, Lentz DR, Ahmadian J (2014) Nature and physicochemical conditions of crystallization in the South Dehgolan intrusion, NW Iran: mineral-chemical evidence. Turk J Earth Sci 10:1404–1418

    Google Scholar 

  • Scandolara JE, Pedro SE, Ribeiro PSE, Antônio AAS, Fuck RA, Joseneusa B, Rodrigues JB (2014) Geochemistry and geochronology of mafic rocks from the Vespor suite in the Juruena arc, Roosevelt-Juruena terrain, Brazil: implications for Proterozoic crustal growth and geodynamic setting of the SW Amazonian craton. J S Am Earth Sci 53:20–49

    Article  Google Scholar 

  • Schwartz JJ, Johnson K, Mueller P, Valley J, Strickland A, Joseph L, Wooden JL (2014) Time scales and processes of Cordilleran batholith construction and high-Sr/Y magmatic pulses: evidence from the Bald Mountain batholith, northeastern Oregon. Geosphere 10:1456–1481

    Article  Google Scholar 

  • Shafaii Moghadam H, Li X-H, Ling XX, Santos JS, Stern RJ, Li QL, Ghorbani G (2015) Eocene Kashmar granitoids (NE Iran): petrogenetic constraints from U–Pb zircon geochronology and isotope geochemistry. Lithos 216–217:118–135

    Article  Google Scholar 

  • Stern CR (2011) Subduction erosion: Rates, mechanism, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res 20:284–308

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geological Society Special Publication 42:313–345

  • Thompson AB (1982) Magmatic of the British Tertiary volcanic province Scottish. J Geol 18:50–107

    Google Scholar 

  • Torabi G (2009) Subduction-related Eocene shoshonites from the Cenozoic Urumieh-Dokhrat magmatic arc (Qaleh-Khargooshi area, western Yazd province, Iran). Turk J Earth Sci 25(18):1–34

    Google Scholar 

  • Väisänen M, Johansson A, Andersson UB, Eklund O, Hölttä P (2012) Paleoproterozoic adakite and TTG-like magmatism in the Svecofennian orogen, SW Finland. Geol Acta 10:351–371

    Google Scholar 

  • Verdel C, Wernicke BP, Hassanzadeh J, Guest B (2011) A Paleogene extensional arc flare-up in Iran. Tectonics 30(3):3008–3029

    Article  Google Scholar 

  • Whalen JB, Currie KLBW (1987) A-type granite: geochemical characteristics discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419

    Article  Google Scholar 

  • White AJR, Chappell BW (1983) Granitoid types and their distribution in the Lachlan Fold Belt southeastern Australia. Geol Soc Am Mem 159:21–34

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 94:185–187

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis a global tectonic approach. Unwin Hyman Ltd., London

    Book  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Office of Graduate Studies of the University of Isfahan and Iranian Academic Center for Education, Culture and Research (ACECR) for their support. The authors also thank Prof. Massonne and Dr. Theye for their significant contribution in the microprobe analysis of minerals in the EPMA laboratories of Stuttgart University (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, A., Tabatabaei Manesh, S. Geochemistry and petrogenesis of Ghohroud Igneous Complex (Urumieh–Dokhtar zone): evidence for Neotethyan subduction during the Neogene. Arab J Geosci 8, 9599–9623 (2015). https://doi.org/10.1007/s12517-015-1883-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-015-1883-7

Keywords

Navigation