Skip to main content

Advertisement

Log in

Groundwater recharge in Titas Upazila in Bangladesh

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

This paper compares two methods—water balance and water table fluctuation (WTF)—to estimate the groundwater recharge in Titas Upazila in Bangladesh. The study area has a size of 107 km2 and is located in Titas Upazila/Comilla district in Bangladesh. Its climate is classified, according to the Köppen Climate Classification, as tropical with a distinct dry season. Our calculations were done season-wise as long-term monthly means for both the monsoon and non-monsoon season separately. The Priestley-Taylor, Blaney-Criddle, and Adjusted-Pan methods were adopted to calculate the actual evapotranspiration (AET) in the wet season. Alternatively, in dry months, when irrigation is active and the situation is much more complex, different methods were used and tested to estimate the actual evapotranspiration. The deficits and surpluses were also calculated with the help of soil moisture data. For the study area, measured soil moisture data are not available, and satellite data do not allow accurate estimation. Therefore, the soil moisture was derived from a linear regression analysis between measured data from different parts of Bangladesh and National Oceanic and Atmospheric Administration (NOAA) soil moisture data. Precipitation during the dry months has no contribution to the annual recharge. So it can be concluded, based on these calculations, that to best estimate the recharge, more attention should be given to rainfall during the wet months. The calculated recharge using the water balance method resulted in three different values (984, 459, and 396 mm/a), where the output of the water table fluctuation method was 230 mm/a. However, the groundwater recharge was expected to be less than the calculated values, taking into consideration the runoff from groundwater and the specific yield as a dynamic value in the study area. The estimated value of recharge was within the range defined in recent previous studies on a national scale in Bangladesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawala S, Ota T, Ahmed AU, Smith J, van Aalst M (2003) Development and climate change in Bangladesh: focus on coastal flooding and the sundarbans. 70.

  • Ahsan UA (2006) Bangladesh climate change impacts and vulnerability—a synthesis. Climate Change Cell, Department of Environment, Bangladesh, Dhaka

    Google Scholar 

  • Akther H, Ahmed MS, Rasheed KBS (2010) Spatial and temporal analysis of groundwater level fluctuation in Dhaka City, Bangladesh. Asian J Earth Sci 3(4):222–230. doi:10.3923/ajes.2010.222.230

    Google Scholar 

  • Alam ATMJ, Saadat AHM, Rahman MS, Barkotulla MAB (2011) Spatial analysis of rainfall distribution and its impact on agricultural drought at Barind Region, Bangladesh. Rajshahi University J Environ Sci 1:40–50

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. Edited by Fao Water Resources. In: FAO Irrigation and Drainage Paper No. 56 300(56):300.

  • Aziz Z, van Geen A, Stute M, Versteeg R, Horneman A, Zheng Y, Goodbred S et al (2008) Impact of local recharge on arsenic concentrations in shallow aquifers inferred from the electromagnetic conductivity of soils in Araihazar, Bangladesh. Water Resour Res 44(7), W07416. doi:10.1029/2007WR006000

    Article  Google Scholar 

  • Bouchet RJ (1963) Evapotranspiration réelle et potentielle; signification climatique. IN: General Assembly of Berkeley: Committee for Evaporation. IAHS Publ 62:134–142

    Google Scholar 

  • Brutsaert WH (1982) Evaporation into the atmosphere: theory, history, and applications. D. Reidel, Dordrecht, Holland

    Book  Google Scholar 

  • Cartwright N, Nielsen P, Perrochet P (2009) Behavior of a shallow water table under periodic flow conditions. Water Resour Res 45(3), W03416. doi:10.1029/2008WR007306

    Article  Google Scholar 

  • Chang J-H (1968) Climate and agriculture. Aldine Publishing Co., Chicago

    Google Scholar 

  • Datta S, Mailloux B, Jung H-B, Hoque MA, Stute M, Ahmed KM, Zheng Y (2009) Redox trapping of arsenic during groundwater discharge in sediments from the Meghna Riverbank in Bangladesh. Proc Natl Acad Sci 106(40):16930–16935. doi:10.1073/pnas.0908168106

    Article  Google Scholar 

  • De Bruin HAR (1983) “Evapotranspiration in humid tropical regions”. In, 299–311. IAHS, Hamburg

    Google Scholar 

  • De Silva, Shanthi C, Rushton KR (2007) Groundwater recharge estimation using improved soil moisture balance methodology for a tropical climate with distinct dry seasons. Hydrol Sci J 52(5):1051–1067. doi:10.1623/hysj.52.5.1051

    Article  Google Scholar 

  • De Vries, Jacobus J, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10(1):5–17. doi:10.1007/s10040-001-0171-7, LA – English

    Article  Google Scholar 

  • Eagleman JR (1967) Pan evaporation, potential and actual evapotranspiration. J Appl Meteorol Climatol 6(3):482–488

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Englewood Cliffs, N.J.: Prentice-Hall. doi:http://books.google.co.in/books/about/Groundwater.html?id=feVOAAAAMAAJ.

  • Harvey CF, Ashfaque KN, Yu W, Badruzzaman ABM, Ali MA, Oates PM, Michael HA et al (2006) Groundwater dynamics and arsenic contamination in Bangladesh. Chem Geol 228(1–3 SPEC. ISS):112–136

    Article  Google Scholar 

  • Hasan MA, Brömssen M, Bhattacharya P, Ahmed KM, Sikder AM, Gunnar J, Ondra S (2009) Geochemistry and mineralogy of shallow alluvial aquifers in Daudkandi Upazila in the Meghna Flood Plain, Bangladesh. Environ Geol 57(3):499–511. doi:10.1007/s00254-008-1319-8, LA – English

    Article  Google Scholar 

  • Karim MR, Ishikawa M, Ikeda M (2012) Modeling of seasonal water balance for crop production in Bangladesh with implications for future projection. Italian Journal of Agronomy 7(2). doi:10.4081/ija.2012.e21.

  • Khan MKA, Alam M, Islam MS, Hassan MQ, Al-Mansur MA (2011) Environmental pollution around Dhaka EPZ and its impact on surface and groundwater. Bangladesh J Sci Ind Res 46(2):153–162

    Article  Google Scholar 

  • Lerner DN, Issar AS, Simmers I (1990) Groundwater recharge: a guide to understanding and estimating natural recharge I. Heise, Hannover

    Google Scholar 

  • Li RY, Stroud JL, Ma JF, McGrath SP, Zhao FJ (2009) Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 43(10):3778–3783. doi:10.1021/es803643v

    Article  Google Scholar 

  • Masud MB, Ferdous J, Ahmed M, Ghosh AK (2011) Water deficit period for irrigation agriculture based on evapotranspiration and dependable rainfall. Bangladesh Res Publ J 5(4):321–328

    Google Scholar 

  • McArthur JM, Banerjee DM, Hudson-Edwards KA, Mishra R, Purohit R, Ravenscroft P, Cronin A et al (2004) Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl Geochem 19(8):1255–1293

    Article  Google Scholar 

  • McCabe GJ, Markstrom SL (2007) A monthly water-balance model driven by a graphical user interface: U.S. Geological Survey Open-File Report 2007–1088.

  • Miah MM, Rushton KR (1997) Exploitation of alluvial aquifers having an overlying zone of low permeability: examples from Bangladesh. Hydrol Sci J 42(1):67–79

    Article  Google Scholar 

  • Michael HA, Voss CI (2009) Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis. Hydrogeol J 17(7):1561–1577

    Article  Google Scholar 

  • Mirza MMQ, Warrick RA, Ericksen NJ (2003) The implications of climate change on floods of the Ganges, Brahmaputra and Meghna Rivers in Bangladesh. Clim Chang 57(3):287–318. doi:10.1023/A:1022825915791, LA – English

    Article  Google Scholar 

  • Mladenov N, Zheng Y, Miller MP, Nemergut DR, Teresa L, Bailey S, Clarissa H, Moshiur Rahman M, Matin Ahmed K, McKnight DM (2009) Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers. Environ Sci Technol 44(1):123–128. doi:10.1021/es901472g

    Article  Google Scholar 

  • Nachabe MH (2002) Analytical expression for transient specific yield and shallow water table drainage. Water Resour Res 38(10):11. doi:10.1029/2001WR001071

    Article  Google Scholar 

  • Neumann RB, Polizzotto ML, Borhan A, Badruzzaman M, Ashraf Ali M, Zhang Z, Harvey CF (2009) Hydrology of a groundwater-irrigated rice field in Bangladesh: seasonal and daily mechanisms of infiltration. Water Resources Research 45(9):n/a–n/a. doi:10.1029/2008WR007542

    Article  Google Scholar 

  • Neumann RB, Ashfaque KN, Badruzzaman ABM, Ashraf Ali M, Shoemaker JK, Harvey CF (2010) Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat Geosci 3(1):46–52

    Article  Google Scholar 

  • NOAA, US (2009) National Oceanic and Atmospheric Administration.

  • Olmsted FH, Hely AG (1962) Relation between ground water and surface water in Brandywine Creek Basin Pennsylvania. Washington.

  • Panaullah GM, Alam T, Baktear Hossain M, Loeppert RH, Lauren JG, Meisner CA, Ahmed ZU, Duxbury JM (2009) Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 317(1–2):31–39. doi:10.1007/s11104-008-9786-y

    Article  Google Scholar 

  • Peng G, Li J, Chen Y, Norizan AP, Tay L (2006) High-resolution surface relative humidity computation using MODIS image in Peninsular Malaysia. Chin Geogr Sci 16(3):260–264. doi:10.1007/s11769-006-0260-6

    Article  Google Scholar 

  • Pike JG (1964) The estimation of annual run-off from meteorological data in a tropical climate. J Hydrol 2(2):116–123. doi:10.1016/0022-1694(64)90022-8

    Article  Google Scholar 

  • Planer-Friedrich B, Härtig C, Lissner H, Steinborn J, Süß E, Qumrul Hassan M, Zahid A, Alam M, Merkel B (2012) Organic carbon mobilization in a Bangladesh aquifer explained by seasonal monsoon-driven storativity changes. Appl Geochem 27(12):2324–2334

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92. doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2

    Article  Google Scholar 

  • Ramsahoye LE, Lang SM, Solomon M (1961) A simple method for determining specific yield from pumping tests.

  • Rowland HAL, Polya DA, Lloyd JR, Pancost RD (2006) Characterisation of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal. Org Geochem 37(9):1101–1114. doi: http://dx.doi.org/10.1016/j.orggeochem.2006.04.011

  • Rushton KR, Ward C (1979) The estimation of groundwater recharge. J Hydrol 41(3–4):345–361. doi:10.1016/0022-1694(79)90070-2

    Article  Google Scholar 

  • Sanderson M, Ahmed R (1979) Potential evapotranspiration and water deficit in Bangladesh using Garnier’s modification of the Thornthwaite water balance. Climatol Bull No 25:14–24

    Google Scholar 

  • Sanford W (2002) Recharge and groundwater models: an overview. Hydrogeol J 10(1):110–120. doi:10.1007/s10040-001-0173-5

    Article  Google Scholar 

  • Scanlon BR, Dutton AR, Sophocleous M (2002) Groundwater recharge in Texas.

  • Sengupta S, McArthur JM, Sarkar A, Leng MJ, Ravenscroft P, Howarth RJ, Banerjee DM (2008) Do ponds cause arsenic-pollution of groundwater in the Bengal Basin? An answer from West Bengal. Environ Sci Technol 42(14):5156–5164. doi:10.1021/es702988m

    Article  Google Scholar 

  • Shamsudduha M, Chandler RE, Taylor RG, Ahmed KM (2009) Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta. Hydrol Earth Syst Sci 13(12):2373–2385. doi:10.5194/hess-13-2373-2009, December 10

    Article  Google Scholar 

  • Shamsudduha M, Taylor RG, Ahmed KM, Zahid A (2011) The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh. Hydrogeol J 19(4):901–916

    Article  Google Scholar 

  • Shirahatti MS, Ranghswami MV, Manjunath MV, Sivasamy R, Santana Bosu S (2012) Using groundwater levels to estimate the recharge: a case study from hard rock area of South India. India Water Week 2012 – Water, Energy and Food Security.

  • Sloto RA (1990) Geohydrology and simulation of ground-water flow in the carbonate rocks of the Valley Creek Basin, Eastern Chester County, Pennsylvania. Harrisburg, Pennsylvania

    Google Scholar 

  • Sophocleous M (1985) The role of specific yield in ground-water recharge estimations: a numerical study. Ground Water 23(1):52–58. doi:10.1111/j.1745-6584.1985.tb02779.x

    Article  Google Scholar 

  • Steckler MS, Nooner SL, Akhter SH, Chowdhury SK, Bettadpur S, Seeber L, Kogan MG (2010) Modeling earth deformation from monsoonal flooding in Bangladesh using hydrographic, GPS, and Gravity Recovery and Climate Experiment (GRACE) Data. J Geophys Res Solid Earth 115(B8):n/a–n/a. doi:10.1029/2009JB007018

    Article  Google Scholar 

  • Sun Y-J, Wang J-F, Zhang R–H, Gillies RR, Xue Y, Bo Y–C (2005) Air temperature retrieval from remote sensing data based on thermodynamics. Theor Appl Climatol 80(1):37–48. doi:10.1007/s00704-004-0079-y

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Syrian Ministry of Higher Education. The authors are grateful to Dr. Shamsudduha and the Bangladesh Water Development Board (BWDB) for providing the water table monitoring data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael Kanoua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanoua, W., Merkel, B.J. Groundwater recharge in Titas Upazila in Bangladesh. Arab J Geosci 8, 1361–1371 (2015). https://doi.org/10.1007/s12517-014-1305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1305-2

Keywords

Navigation