Skip to main content

Advertisement

Log in

Dual Energy Imaging in Cardiovascular CT: Current Status and Impact on Radiation, Contrast and Accuracy

  • Cardiac Computed Tomography (S Achenbach and T Villines, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Dual-energy computed tomography (DECT) exploits the continuous energy distribution of x-rays to improve differentiation of tissues beyond what is possible with single-energy CT (SECT). DECT often uses smaller volumes of iodinated contrast agent and lower radiation doses than SECT. Clinical applications of DECT in cardiovascular imaging are emerging and include myocardial perfusion imaging, myocardial infarct and viability imaging, coronary plaque characterization, coronary stent assessment, and myocardial iron quantification. In this review, we discuss the available methods for acquiring and processing DECT data, the current status of DECT in cardiovascular imaging, and its impact on the dose of radiation and contrast agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kang DK, Schoepf UJ, Bastarrika G, Nance Jr JW, Abro JA, Ruzsics B. Dual-energy computed tomography for integrative imaging of coronary artery disease: principles and clinical applications. Semin Ultrasound CT MR. 2010;31:276–91.

    Article  PubMed  Google Scholar 

  2. Flohr TG, McCollough CH, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system [erratum in Eur Radiol. 2006;16:1405]. Eur Radiol. 2006;16:256–68.

    Article  PubMed  Google Scholar 

  3. So A, Lee TY, Imal Y, et al. Quantitative myocardial perfusion imaging using rapid kVp switch dual energy CT: a preliminary experience. J Cardiovasc Comput Tomogr. 2011;5(6):430–2.

    Article  PubMed  Google Scholar 

  4. Roessl E, Herrmann C, Kraft E, Proksa R. A comparative study of a dual-energy-like imaging technique based on counting-integrating readout. Med Phys. 2011;38:6416–28.

    Article  PubMed  Google Scholar 

  5. So A, Hsieh J, Narayanan S, et al. Dual-energy CT and its potential use for quantitative myocardial CT perfusion. J Cardiovasc Comput Tomogr. 2012;6:308–17. The authors describe the use of rapid tube potential switching technology for quantitative myocardial perfusion CT. This method of data acquisition permits creation of virtual monochromatic images using a projection-based approach with significantly decreased beam-hardening artifacts compared to standard CT images. The reduction of beam-hardening artifacts is important because these artifacts can induce non-uniform shifts in CT numbers and confound assessment of myocardial perfusion.

    Article  PubMed  Google Scholar 

  6. Kim SM, Chang SA, Shin W, Choe YH. Dual-energy CT perfusion during pharmacologic stress for the assessment of myocardial perfusion defects using a second-generation dual-source CT: a comparison with cardiac magnetic resonance imaging. J Comput Assist Tomogr. 2014;38:44–52.

    Article  PubMed  Google Scholar 

  7. Weininger M, Schoepf UJ, Ramachandra A, et al. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: initial results. Eur J Radiol. 2012;81:3703–10. The authors describe initial experience in performing myocardial stress perfusion CT in a clinical population with acute chest pain and demonstrated that compared to both SPECT and MRI, dynamic real-time perfusion CT and first-pass dual-energy perfusion CT show good agreement for detection of myocardial perfusion defects.

    Article  PubMed  Google Scholar 

  8. Meinel FG, De Cecco CN, Schoepf UJ, et al. First-arterial-pass dual-energy CT for assessment of myocardial blood supply: do we need rest, stress, and delayed acquisition? Comparison with SPECT. Radiology. 2014;270:708–16. This comparison study with SPECT shows that the accuracy of DECT for assessment of the myocardial blood supply is not increased by the addition of a delayed DECT acquisition and concludes that the delayed scan may be omitted to reduce radiation exposure. The authors also demonstrate that almost 50 % of defects defined as reversible with SPECT were misclassified as fixed with rest–stress DECT and warn clinicians interpreting DECT myocardial perfusion studies about this discrepancy.

    Article  PubMed  Google Scholar 

  9. Arnoldi E, Lee YS, Ruzsics B, et al. CT detection of myocardial blood volume deficits: dual-energy CT compared with single-energy CT spectra. J Cardiovasc Comput Tomogr. 2011;5:421.

    Article  PubMed  Google Scholar 

  10. Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ. Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia – initial experience. Eur Radiol. 2008;18:2414–24.

    Article  PubMed  Google Scholar 

  11. Ruzsics B, Schwarz F, Schoepf UJ, et al. Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol. 2009;104:318–26.

    Article  PubMed  Google Scholar 

  12. Wang R, Yu W, Wang Y, et al. Incremental value of dual-energy CT to coronary angiography for the detection of significant coronary stenosis: comparison with quantitative coronary angiography and single photon emission computed tomography. Int J Cardiovasc Imaging. 2011;27:647–56.

    Article  CAS  PubMed  Google Scholar 

  13. Ko SM, Choi JW, Song MG, et al. Myocardial perfusion imaging using adenosine-induced stress dual-energy computed tomography of the heart: comparison with cardiac magnetic resonance imaging and conventional coronary angiography. Eur Radiol. 2011;21:26–35.

    Article  PubMed  Google Scholar 

  14. Ko SM, Choi JW, Hwang HK, Song MG, Shin JK, Chee HK. Diagnostic performance of combined noninvasive anatomic and functional assessment with dual-source CT and adenosine-induced stress dual-energy CT for detection of significant coronary stenosis. AJR Am J Roentgenol. 2012;198:512–20.

    Article  PubMed  Google Scholar 

  15. Meyer M, Nance Jr JW, Schoepf UJ, et al. Cost-effectiveness of substituting dual-energy CT for SPECT in the assessment of myocardial perfusion for the workup of coronary artery disease. Eur J Radiol. 2012;81:3719–25.

    Article  PubMed  Google Scholar 

  16. Heymann MA, Payne BD, Hoffman JI, Rudolph AM. Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis. 1977;20:55–79.

    Article  CAS  PubMed  Google Scholar 

  17. Nagao M, Matusjoka H, Kawakami H, et al. Quantification of myocardial perfusion by contrast-enhanced 64-MDCT: characterization of ischemic myocardium. AJR Am J Roentgenol. 2008;191:19–25.

    Article  PubMed  Google Scholar 

  18. Yamada M, Jinzaki M, Kuribayashi S, Imanishi N, Funato K, Aiso S. Beam-hardening correction for virtual monochromatic imaging of myocardial perfusion via fast-switching dual-kVp 64-slice computed tomography: a pilot study using a human heart specimen. Circ J. 2012;76:1799–801.

    Article  PubMed  Google Scholar 

  19. Nagao M, Kido T, Watanabe K, et al. Functional assessment of coronary artery flow using adenosine stress dual-energy CT: a preliminary study. Int J Cardiovasc Imaging. 2011;27:471–81.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Peng J, Zhang LJ, Schoepf UJ, et al. Acute myocardial infarct detection with dual energy CT: correlation with single photon emission computed tomography myocardial scintigraphy in a canine model. Acta Radiol. 2013;54:259–66.

    Article  PubMed  Google Scholar 

  21. Kerl JM, Deseive S, Tandi C, et al. Dual energy CT for the assessment of reperfused chronic infarction: a feasibility study in a porcine model. Acta Radiol. 2011;52:834–9.

    Article  PubMed  Google Scholar 

  22. Bauer RW, Kerl JM, Fischer N, et al. Dual-energy CT for the assessment of chronic myocardial infarction in patients with chronic coronary artery disease: comparison with 3T MRI. AJR Am J Roentgenol. 2010;195:639–46.

    Article  PubMed  Google Scholar 

  23. Deseive S, Bauer RW, Lehmann R, et al. Dual-energy computed tomography for the detection of late enhancement in reperfused chronic infarction: a comparison to magnetic resonance imaging and histopathology in a porcine model. Invest Radiol. 2011;46:450–6.

    Article  PubMed  Google Scholar 

  24. Schwarz F, Nance Jr JW, Ruzsics B, Bastarrika G, Sterzik A, Schoepf UJ. Quantification of coronary artery calcium on the basis of dual-energy coronary CT angiography. Radiology. 2012;264:700–7.

    Article  PubMed  Google Scholar 

  25. Yamak D, Pavlicek W, Boltz T, Panse PM, Akay M. Coronary calcium quantification using contrast-enhanced dual-energy computed tomographic scans. J Appl Clin Med Phys. 2013;14:4014.

    PubMed  Google Scholar 

  26. Boll DT, Merkle EM, Paulson EK, Mirza RA, Fleiter TR. Calcified vascular plaque specimens: assessment with cardiac dual-energy multi detector CT in anthropomorphically moving heart phantom. Radiology. 2008;249:119–26.

    Article  PubMed  Google Scholar 

  27. Pohle K, Achenbach S, Macneill B, et al. Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis. 2007;190:174–80.

    Article  CAS  PubMed  Google Scholar 

  28. Barreto M, Schoenhagen P, Nair A, et al. Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology. J Cardiovasc Comput Tomogr. 2008;2:234–42.

    Article  PubMed  Google Scholar 

  29. Tanami Y, Ikeda E, Jinzaki M, et al. Computed tomographic attenuation value of coronary atherosclerotic plaques with different tube voltage: an ex vivo study. J Comput Assist Tomogr. 2010;34:58–63.

    Article  PubMed  Google Scholar 

  30. Henzler T, Porubsky S, Kayed H, et al. Attenuation-based characterization of coronary atherosclerotic plaque: comparison of dual source and dual energy CT with single-source CT and histopathology. Eur J Radiol. 2011;80:54–9.

    Article  PubMed  Google Scholar 

  31. Halpern EJ, Halpern DJ, Yanof JH, et al. Is coronary stent assessment improved with spectral analysis of dual energy CT? Acad Radiol. 2009;16:1241–50.

    Article  PubMed  Google Scholar 

  32. Boll DT, Merkle EM, Paulson EK, Fleiter TR. Coronary stent patency: dual-energy multidetector CT assessment in a pilot study with anthropomorphic phantom. Radiology. 2008;247:687–95.

    Article  PubMed  Google Scholar 

  33. Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21:1424–9.

    Article  PubMed  Google Scholar 

  34. Secchi F, De Cecco CN, Spearman JV, et al. Monoenergetic extrapolation of cardiac dual energy CT for artifact reduction. Acta Radiol. 2014. doi:10.1177/0284185114527867.

    Google Scholar 

  35. Ibrahim EH, Bowman AW. Evaluation of iron overload: dual-energy computed tomography versus magnetic resonance imaging. J Cardiovasc Magn Reson. 2014;16:O92.

    Article  PubMed Central  Google Scholar 

  36. Hazirolan T, Akpinar B, Unal S, Gumruk F, Haliloglu M, Alibek S. Value of dual energy computed tomography for detection of myocardial iron deposition in thalassaemia patients: initial experience. Eur J Radiol. 2008;68:442–5.

    Article  PubMed  Google Scholar 

  37. Rozenblit AM, Patlas M, Rosenbaum AT, et al. Detection of endoleaks after endovascular repair of abdominal aortic aneurysm: value of unenhanced and delayed helical CT acquisitions. Radiology. 2003;227:426–33.

    Article  PubMed  Google Scholar 

  38. Numburi UD, Schoenhagen P, Flamm SD, et al. Feasibility of dual-energy CT in the arterial phase: imaging after endovascular aortic repair. AJR Am J Roentgenol. 2010;195:486–93.

    Article  PubMed  Google Scholar 

  39. Chandarana H, Godoy MC, Vlahos I, et al. Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms – initial observations. Radiology. 2008;249:692–700.

    Article  PubMed  Google Scholar 

  40. Sommer WH, Graser A, Becker CR, et al. Image quality of virtual noncontrast images derived from dual-energy CT angiography after endovascular aneurysm repair. J Vasc Interv Radiol. 2010;21:315–21.

    Article  PubMed  Google Scholar 

  41. Stolzmann P, Frauenfelder T, Pfammatter T, et al. Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology. 2008;249:682–91.

    Article  PubMed  Google Scholar 

  42. Maturen KE, Kleaveland PA, Kaza RK, et al. Aortic endograft surveillance: use of fast-switch kVp dual-energy computed tomography with virtual noncontrast imaging. J Comput Assist Tomogr. 2011;35:742–6.

    Article  PubMed  Google Scholar 

  43. Shaida N, Bowden DJ, Barrett T, et al. Acceptability of virtual unenhanced CT of the aorta as a replacement for the conventional unenhanced phase. Clin Radiol. 2012;67:461–7.

    Article  CAS  PubMed  Google Scholar 

  44. Maturen KE, Kaza RK, Liu PS, Quint LE, Khalatbari SH, Platt JF. “Sweet spot” for endoleak detection: optimizing contrast to noise using low keV reconstructions from fast-switch kVp dual-energy CT. J Comput Assist Tomogr. 2012;36:83–7.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Schenzle JC, Sommer WH, Neumaier K, et al. Dual energy CT of the chest: how about the dose? Invest Radiol. 2010;45:347–53.

    PubMed  Google Scholar 

  46. Kerl JM, Bauer RW, Maurer TB, et al. Dose levels of coronary CT angiography – a comparison of dual energy-, dual source-, and 16-slice CT. Eur Radiol. 2011;21:530–7.

    Article  PubMed  Google Scholar 

  47. Henzler T, Fink C, Schoenberg SO, Schoepf UJ. Dual-energy CT: radiation dose aspects. AJR Am J Roentgenol. 2012;199:S16–25.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the editorial assistance of Megan M. Griffiths, scientific writer for the Imaging Institute, Cleveland Clinic, Cleveland, Ohio.

Compliance with Ethics Guidelines

Conflict of Interest

Prabhakar Rajiah and Sandra Hallburton declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar Rajiah.

Additional information

This a article is part of the Topical Collection on Cardiac Computed Tomography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajiah, P., Halliburton, S.S. Dual Energy Imaging in Cardiovascular CT: Current Status and Impact on Radiation, Contrast and Accuracy. Curr Cardiovasc Imaging Rep 7, 9289 (2014). https://doi.org/10.1007/s12410-014-9289-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-014-9289-6

Keywords

Navigation