Skip to main content

Advertisement

Log in

Pharmacologic Stress Agents for Cardiac Imaging

  • Cardiac Nuclear Imaging (A Cuocolo, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Non-invasive cardiac imaging plays a major role in modern Cardiology and is becoming an essential step in the assessment of patients with known or suspected coronary artery disease. In this setting, cardiac imaging is combined with stress to assess the functional significance of coronary stenosis. Dynamic exercise is the most physiological form of stress and hence it is regarded as the stress modality of choice. When exercise is not possible, pharmacological stress can be used as an effective and safe alternative. We here describe the mechanism of action, protocols, indications and contraindications as well as the diagnostic performance and safety profile of all pharmacological agents currently available for stress imaging with an emphasis on the newly developed A2A adenosine receptor agonist, regadenoson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol. 1974;34:48–55.

    Article  PubMed  CAS  Google Scholar 

  2. Gibbons RJ, Balady GJ, Bricker JT, et al. ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation. 2002;106(14):1883–92.

    Article  PubMed  Google Scholar 

  3. Picano E. Dipyridamole-echocardiography test: historical background and physiologic basis. Eur Heart J. 1989;10:365–76.

    PubMed  CAS  Google Scholar 

  4. Reyes E, Stirrup J, Roughton M, D'Souza S, Underwood SR, Anagnostopoulos C. Attenuation of adenosine-induced myocardial perfusion heterogeneity by atenolol and other cardioselective beta-adrenoceptor blockers: a crossover myocardial perfusion imaging study. J Nucl Med. 2010;51(7):1036–43.

    Article  PubMed  Google Scholar 

  5. Taillefer R, Ahlberg AW, Masood Y, et al. Acute beta-blockade reduces the extent and severity of myocardial perfusion defects with dipyridamole Tc-99m sestamibi SPECT imaging. J Am Coll Cardiol. 2003;42(8):1475–83.

    Article  PubMed  CAS  Google Scholar 

  6. Sharir T, Rabinowitz B, Livschitz S, et al. Underestimation of extent and severity of coronary artery disease by dipyridamole stress thallium-201 single-photon emission computed tomographic myocardial perfusion imaging in patients taking antianginal drugs. J Am Coll Cardiol. 1998;31(7):1540–6.

    Article  PubMed  CAS  Google Scholar 

  7. Anagnostopoulos C, Harbinson M, Kelion A, et al. Procedure guidelines for radionuclide myocardial perfusion imaging. Heart. 2004;90 Suppl 1:i1–10.

    Article  PubMed  Google Scholar 

  8. Henzlova M, Cerqueira MD, Hansen C, Taileffer R, Siu-Sun Y. ASNC Imaging Guidelines for Nuclear Cardiology Procedures: Stress protocols and tracers. American Society of Nuclear Cardiology (ASNC) 2009 at http://www.asnc.org/section_73.cfm. 01/02/2010.

  9. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53(4):527–52.

    PubMed  CAS  Google Scholar 

  10. Mubagwa K, Flameng W. Adenosine, adenosine receptors and myocardial protection: an updated overview. Cardiovasc Res. 2001;52(1):25–39.

    Article  PubMed  CAS  Google Scholar 

  11. Sato A, Terata K, Miura H, et al. Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am J Physiol Heart Circ Physiol. 2005;288(4):H1633–40.

    Article  PubMed  CAS  Google Scholar 

  12. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation. 1990;82(5):1595–606.

    Article  PubMed  CAS  Google Scholar 

  13. O'Keefe Jr JH, Bateman TM, Handlin LR, Barnhart CS. Four- versus 6-minute infusion protocol for adenosine thallium-201 single photon emission computed tomography imaging. Am Heart J. 1995;129(3):482–7.

    Article  PubMed  Google Scholar 

  14. Barkhausen J, Hunold P, Jochims M, Debatin JF. Imaging of myocardial perfusion with magnetic resonance. J Magn Reson Imaging. 2004;750–57.

  15. Villegas BJ, Hendel RC, Dahlberg ST, McSherry BA, Leppo JA. Comparison of 3- versus 6-minute infusions of adenosine in thallium-201 myocardial perfusion imaging. Am Heart J. 1993;126(1):103–7.

    Article  PubMed  CAS  Google Scholar 

  16. Treuth MG, Reyes GA, He ZX, Cwajg E, Mahmarian JJ, Verani MS. Tolerance and diagnostic accuracy of an abbreviated adenosine infusion for myocardial scintigraphy: a randomized, prospective study. J Nucl Cardiol. 2001;8(5):548–54.

    Article  PubMed  CAS  Google Scholar 

  17. Reyes E, Loong CY, Harbinson M, Donovan J, Anagnostopoulos C, Underwood SR. High-dose adenosine overcomes the attenuation of myocardial perfusion reserve caused by caffeine. J Am Coll Cardiol. 2008;52(24):2008–16.

    Article  PubMed  CAS  Google Scholar 

  18. Kaufmann PA, Gnecchi-Ruscone T, di TM, Schafers KP, Luscher TF, Camici PG. Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation. 2000;102(11):1233–8.

    Article  PubMed  CAS  Google Scholar 

  19. De BB, Pijls NH, Barbato E, et al. Intracoronary and intravenous adenosine 5'-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circulation. 2003;107(14):1877–83.

    Article  Google Scholar 

  20. Akinboboye OO, Idris O, Chou RL, Sciacca RR, Cannon PJ, Bergmann SR. Absolute quantitation of coronary steal induced by intravenous dipyridamole. J Am Coll Cardiol. 2001;37(1):109–16.

    Article  PubMed  CAS  Google Scholar 

  21. Werner GS, Fritzenwanger M, Prochnau D, et al. Determinants of coronary steal in chronic total coronary occlusions donor artery, collateral, and microvascular resistance. J Am Coll Cardiol. 2006;48(1):51–8.

    Article  PubMed  Google Scholar 

  22. Cerqueira MD, Verani MS, Schwaiger M, Heo J, Iskandrian AS. Safety profile of adenosine stress perfusion imaging: results from the Adenoscan Multicenter Trial Registry. J Am Coll Cardiol. 1994;23(2):384–9.

    Article  PubMed  CAS  Google Scholar 

  23. Mishra RK, Dorbala S, Logsetty G, et al. Quantitative relation between hemodynamic changes during intravenous adenosine infusion and the magnitude of coronary hyperemia: implications for myocardial perfusion imaging. J Am Coll Cardiol. 2005;45(4):553–8.

    Article  PubMed  CAS  Google Scholar 

  24. • Mathur S, Shah AR, Ahlberg AW, Katten DM, Heller GV. Blunted heart rate response as a predictor of cardiac death in patients undergoing vasodilator stress technetium-99m sestamibi gated SPECT myocardial perfusion imaging. J Nucl Cardiol. 2010;17(4):617–24. This paper demonstrates the independent prognostic value of heart rate changes in response to vasodilator stress in patients undergoing myocardial perfusion scintigraphy for the assessment of coronary artery disease.

  25. Thomas GS, Prill NV, Majmundar H, et al. Treadmill exercise during adenosine infusion is safe, results in fewer adverse reactions, and improves myocardial perfusion image quality. J Nucl Cardiol. 2000;7(5):439–46.

    Article  PubMed  CAS  Google Scholar 

  26. Pennell DJ, Mavrogeni SI, Forbat SM, Karwatowski SP, Underwood SR. Adenosine combined with dynamic exercise for myocardial perfusion imaging. J Am Coll Cardiol. 1995;25(6):1300–9.

    Article  PubMed  CAS  Google Scholar 

  27. Bouvier F, Hojer J, Hulting J, Ruiz H, Samad B, Jensen-Urstad M. Myocardial perfusion scintigraphy (SPECT) during adenosine stress can be performed safely early on after thrombolytic therapy in acute myocardial infarction. Clin Physiol. 1998;18(2):97–101.

    Article  PubMed  CAS  Google Scholar 

  28. Reyes E, Loong CY, Wechalekar K, Latus K, Anagnostopoulos C, Underwood SR. Side effect profile and tolerability of adenosine myocardial perfusion scintigraphy in patients with mild asthma or chronic obstructive pulmonary disease. J Nucl Cardiol. 2007;14(6):827–34.

    Article  PubMed  Google Scholar 

  29. Sundram F, Notghi A, Smith NB. Pharmacological stress myocardial perfusion scintigraphy: use of a modified adenosine protocol in patients with asthma. Nucl Med Commun. 2009;30(3):217–25.

    Article  PubMed  Google Scholar 

  30. Botvinick EH, Dae MW. Dipyridamole perfusion scintigraphy. Semin Nucl Med. 1991;21(3):242–65.

    Article  PubMed  CAS  Google Scholar 

  31. Rossen JD, Quillen JE, Lopez AG, Stenberg RG, Talman CL, Winniford MD. Comparison of coronary vasodilation with intravenous dipyridamole and adenosine. J Am Coll Cardiol. 1991;18(2):485–91.

    Article  PubMed  CAS  Google Scholar 

  32. Ranhosky A, Kempthorne-Rawson J. The safety of intravenous dipyridamole thallium myocardial perfusion imaging. Intravenous Dipyridamole Thallium Imaging Study Group. Circulation. 1990;81(4):1205–9.

    Article  PubMed  CAS  Google Scholar 

  33. Gao Z, Li Z, Baker SP, et al. Novel short-acting A2A adenosine receptor agonists for coronary vasodilation: inverse relationship between affinity and duration of action of A2A agonists. J Pharmacol Exp Ther. 2001;298(1):209–18.

    PubMed  CAS  Google Scholar 

  34. Zablocki J, Palle V, Blackburn B, et al. 2-substituted pi system derivatives of adenosine that are coronary vasodilators acting via the A2A adenosine receptor. Nucleosides Nucleotides Nucleic Acids. 2001;20(4–7):343–60.

    Article  PubMed  CAS  Google Scholar 

  35. Lieu HD, Shryock JC, von Mering GO, et al. Regadenoson, a selective A2A adenosine receptor agonist, causes dose-dependent increases in coronary blood flow velocity in humans. J Nucl Cardiol. 2007;14(4):514–20.

    Article  PubMed  Google Scholar 

  36. Iskandrian AE, Bateman TM, Belardinelli L, et al. Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol. 2007;14(5):645–58.

    Article  PubMed  Google Scholar 

  37. Dhalla AK, Wong MY, Wang WQ, Biaggioni I, Belardinelli L. Tachycardia caused by A2A adenosine receptor agonists is mediated by direct sympathoexcitation in awake rats. J Pharmacol Exp Ther. 2006;316(2):695–702.

    Article  PubMed  CAS  Google Scholar 

  38. Gordi T, Frohna P, Sun HL, Wolff A, Belardinelli L, Lieu H. A population pharmacokinetic/pharmacodynamic analysis of regadenoson, an adenosine A2A-receptor agonist, in healthy male volunteers. Clin Pharmacokinet. 2006;45(12):1201–12.

    Article  PubMed  CAS  Google Scholar 

  39. Reyes E, Staehr P, Olmsted A, et al. Effect of body mass index on the efficacy, side effect profile, and plasma concentration of fixed-dose regadenoson for myocardial perfusion imaging. J Nucl Cardiol. 2011;18(4):620–7.

    Article  PubMed  Google Scholar 

  40. Cerqueira MD, Nguyen P, Staehr P, Underwood SR, Iskandrian AE, on behalf of the ADVANCE-MPI Trial Investigators. Effects of Age, Gender, Obesity, and Diabetes on the Efficacy and Safety of the Selective A2A Agonist Regadenoson Versus Adenosine in Myocardial Perfusion Imaging: Integrated ADVANCE-MPI Trial Results. J Am Coll Cardiol Img. 2008;1(3):307–16.

    Article  Google Scholar 

  41. Dibella EV, Fluckiger JU, Chen L, et al. The effect of obesity on regadenoson-induced myocardial hyperemia: a quantitative magnetic resonance imaging study. Int J Cardiovasc Imaging. 2012;28(6):1435–44.

    Article  PubMed  Google Scholar 

  42. Gordi T, Blackburn B, Lieu H. Regadenoson pharmacokinetics and tolerability in subjects with impaired renal function. J Clin Pharmacol. 2007;47(7):825–33.

    Article  PubMed  CAS  Google Scholar 

  43. • Aljaroudi W, Iqbal F, Koneru J, Bhambhvani P, Heo J, Iskandrian AE. Safety of regadenoson in patients with end-stage liver disease. J Nucl Cardiol. 2011;18(1):90–5. The results from this study indicate that regadenoson can be administered safely in patients with liver and renal disease.

  44. • Doukky R, Rangel MO, Wassouf M, Dick R, Alqaid A, Morales Demori R. The safety and tolerability of regadenoson in patients with end-stage renal disease: The first prospective evaluation. J Nucl Cardiol. 2013;20(2):205–13. The results from this and the previous study (ref. 43) indicate that regadenoson can be administered safely in patients with liver and renal disease.

  45. •• Bhave NM, Freed BH, Yodwut C, Kolanczyk D, Dill K, Lang RM, et al. Considerations when measuring myocardial perfusion reserved by cardiovascular magnetic resonance using regadenoson. J Cardiovasc Magn Reson. 2012;14:89. This paper describes the impact of regadenoson pharmacokinetics on myocardial perfusion reserve measurements by magnetic resonance imaging.

  46. Gaemperli O, Schepis T, Koepfli P, et al. Interaction of caffeine with regadenoson-induced hyperemic myocardial blood flow as measured by positron emission tomography: a randomized, double-blind, placebo-controlled crossover trial. J Am Coll Cardiol. 2008;51(3):328–9.

    Article  PubMed  Google Scholar 

  47. Tejani FH, Thompson RC, Kristy R, McNutt BE, Iskandrian AE. The effect of caffeine on the accuracy of regadenoson stress myocardial perfusion imaging for detecting reversible perfusion defects (abstract). J Nucl Cardiol. 2011;18(4):748–800.

    Article  Google Scholar 

  48. • Doukky R, Morales Demori R, Jain S, Kiriakos R, Mwansa V, Calvin JE. Attenuation of the side effect profile of regandeoson: arandomized double-blided placebo-controlled study with aminophylline in patients undergoing myocardial perfusion imaging “The ASSUAGE trial”. J Nucl Cardiol. 2012;19(3):448–57. According to the results of this study, routine use of aminophylline following regadenoson injection is associated with a significant reduction in the frequency of regadenoson-related side effects.

  49. Thomas GS, Thompson RC, Miyamoto MI, et al. The RegEx trial: a randomized, double-blind, placebo- and active-controlled pilot study combining regadenoson, a selective A(2A) adenosine agonist, with low-level exercise, in patients undergoing myocardial perfusion imaging. J Nucl Cardiol. 2009;16(1):63–72.

    Article  PubMed  Google Scholar 

  50. •• Partington SL, Lanka V, Hainer J, Blankstein R, Skali H, Forman DE, et al. Safety and feasibility of regadenoson use for suboptimal heart rate response during symptom-limited standard Bruce exercise stress test. J Nucl Cardiol. 2012;19(5):970–8. This study provides evidence on the feasibility of regadenoson injection in patients undergoing myocardial perfusion scintigraphy who are unable to complete an exercise test.

  51. Loong CY, Anagnostopoulos C. Diagnosis of coronary artery disease by radionuclide myocardial perfusion imaging. Heart. 2004;90 Suppl 5:v2–9.

    Article  PubMed  Google Scholar 

  52. •• Fiechter M, Ghadi JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med. 2012;53(8):1230–4. This paper demonstrate the importance of myocardial perfusion assessment by PET imaging and highlight the added diagnostic value of absolute measurements of myocardial perfusion to visual assessment.

  53. •• Anagnostopoulos C, Georgakopoulos A, Pianou N, Nekolla SG. Assessment of myocardial perfusion and viability by Positron Emission Tomography. Int J Cardiol. 2013. doi:10.1016/j.ijcard.2012.12.009. This and the previous paper (52) demonstrate the importance of myocardial perfusion assessment by PET imaging and highlight the added diagnostic value of absolute measurements of myocardial perfusion to visual assessment.

  54. Watkins S, McGeoch R, Lyne J, Steedman T, Good R, McLaughlin MJ, et al. Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation. 2009;120(22):2207–13.

    Article  PubMed  Google Scholar 

  55. Mahmarian JJ, Cerqueira MD, Iskandrian AE, et al. Regadenoson induces comparable left ventricular perfusion defects as adenosine: a quantitative analysis from the ADVANCE MPI 2 trial. JACC Cardiovasc Imaging. 2009;2(8):959–68.

    Article  PubMed  Google Scholar 

  56. Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F, et al. Guidelines for the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology, guidelines. Eur Heart J. 2006;27(11):1341–81.

    Article  PubMed  Google Scholar 

  57. Picano E, Mathias Jr W, Pingitore A, Bigi R, Previtali M. Safety and tolerability of dobutamine-atropine stress echocardiography: a prospective, multicentre study. Echo Dobutamine International Cooperative Study Group. Lancet. 1994;344(8931):1190–2.

    Article  PubMed  CAS  Google Scholar 

  58. Geleijnse ML, Elhendy A, Fioretti PM, Roelandt JR. Dobutamine stress myocardial perfusion imaging. J Am Coll Cardiol. 2000;36(7):2017–27.

    Article  PubMed  CAS  Google Scholar 

  59. Jagathesan R, Kaufmann PA, Rosen SD, et al. Assessment of the long-term reproducibility of baseline and dobutamine-induced myocardial blood flow in patients with stable coronary artery disease. J Nucl Med. 2005;46(2):212–9.

    PubMed  Google Scholar 

  60. Attenhofer CH, Pellikka PA, McCully RB, Roger VL, Seward JB. Paradoxical sinus deceleration during dobutamine stress echocardiography: description and angiographic correlation. J Am Coll Cardiol. 1997;29(5):994–9.

    Article  PubMed  CAS  Google Scholar 

  61. Aydin M, Caner B, Yildirir A, Sari O, Tokgozoglu L. Dobutamine combined with low-level exercise for myocardial perfusion scintigraphy. Nucl Med Commun. 2000;21(11):1015–20.

    Article  PubMed  CAS  Google Scholar 

  62. Pennell DJ, Underwood SR, Ell PJ. Safety of dobutamine stress for thallium-201 myocardial perfusion tomography in patients with asthma. Am J Cardiol. 1993;71(15):1346–50.

    Article  PubMed  CAS  Google Scholar 

  63. McNeill AJ, Fioretti PM, el-Said SM, Salustri A, Forster T, Roelandt JR. Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dobutamine stress echocardiography. Am J Cardiol. 1992;70(1):41–6.

    Article  PubMed  CAS  Google Scholar 

  64. Gebker R, Jahnke C, Manka R, Hucko T, Schnackenburg B, Kelle S, et al. The role of dobutamine stress cardiovascular magnetic resonance in the clinical management of patients with suspected and known coronary artery disease. J Cardiovasc Magn Reson. 2011;13(1):46.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

Eliana Reyes declares she has no conflict of interest.

Constantinos Anagnostopoulos declares he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Anagnostopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyes, E., Anagnostopoulos, C. Pharmacologic Stress Agents for Cardiac Imaging. Curr Cardiovasc Imaging Rep 6, 369–378 (2013). https://doi.org/10.1007/s12410-013-9212-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-013-9212-6

Keywords

Navigation