Skip to main content

Advertisement

Log in

Advances in Molecular Imaging: Innervation Imaging

  • Cardiac Nuclear Imaging (A Cuocolo, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Cardiac autonomic nervous system plays a major role in maintaining hemodynamic and electrophysiological stability to changing demands. There is increasing evidence showing that imaging cardiac autonomic nervous system can evaluate patients with different cardiac conditions, including ischemic heart disease, arrhythmias and heart failure (HF), with high prognostic value, thus providing a potential tool for improving patient management. Excellent reviews on cardiac autonomic imaging with SPECT and PET tracers have been recently published. This review is aimed to bring the reader up-to-date on the subject with particular emphasis on the major findings of recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Carrió I. Cardiac neurotransmission imaging. J Nucl Med. 2001;42:1062–76.

    PubMed  Google Scholar 

  2. Flotats A, Carrió I. Cardiac neurotransmission SPECT imaging. J Nucl Cardiol. 2004;11:587–602.

    Article  PubMed  Google Scholar 

  3. Bengel FM, Schwaiger M. Assessment of cardiac sympathetic neuronal function using PET imaging. J Nucl Cardiol. 2004;11:603–16.

    Article  PubMed  Google Scholar 

  4. Travin MI. Cardiac autonomic imaging with SPECT tracers. J Nucl Cardiol. 2013;20:128–43.

    Article  PubMed  Google Scholar 

  5. Thackeray JT, Bengel FM. Assessment of cardiac autonomic neuronal function using PET imaging. J Nucl Cardiol. 2013;20:150–65.

    Article  PubMed  Google Scholar 

  6. Veltman CE, Boogers MJ, Meinardi JE, et al. Reproducibility of planar 123I-meta-iodobenzylguanidine (MIBG) myocardial scintigraphy in patients with heart failure. Eur J Nucl Med Mol Imaging. 2012;39:1599–608.

    Article  PubMed  CAS  Google Scholar 

  7. Jacobson AF, Matsuoka DT. Influence of myocardial region of interest definition on quantitative analysis of planar 123I-mIBG images. Eur J Nucl Med Mol Imaging. 2013;40:558–64.

    Article  PubMed  Google Scholar 

  8. Chen JI, Folks RD, Verdes L, Manatunga DN, Jacobson AF, Garcia EV. Quantitative I-123 mIBG SPECT in differentiating abnormal and normal mIBG myocardial uptake. J Nucl Cardiol. 2012;19:92–9.

    Article  PubMed  Google Scholar 

  9. van der Veen BJ, Al Younis I, de Roos A, Stokkel MPM. Assessment of global cardiac I-123 MIBG uptake and washout using volumetric quantification of SPECT acquisitions. J Nucl Cardiol. 2012;19(4):752–62.

    Article  PubMed  Google Scholar 

  10. Eskola O, Grönroos TJ, Naum A, et al. Novel electrophilic synthesis of 6-[18F]fluorodopamine and comprehensive biological evaluation. Eur J Nucl Med Mol Imaging. 2012;39:800–10.

    Article  PubMed  CAS  Google Scholar 

  11. Yu M, Bozek J, Lamoy M, et al. Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging. 2011;4:435–43.

    Article  PubMed  Google Scholar 

  12. Jang KS, Jung YW, Sherman PS, Quesada CA, Gu G, Raffel DM. Synthesis and bioevaluation of [(18)F]4-fluoro-m-hydroxyphenethylguanidine ([(18)F]4F-MHPG): a novel radiotracer for quantitative PET studies of cardiac sympathetic innervation. Bioorg Med Chem Lett. 2013. doi:10.1016/j.bmcl.2013.01.106.

    Google Scholar 

  13. Thackeray JT, Parsa-Nezhad M, Kenk M, et al. Reduced CGP12177 binding to cardiac beta-adrenoceptors in hyperglycemic high-fat-diet-fed, streptozotocin-induced diabetic rats. Nucl Med Biol. 2011;38:1059–66.

    Article  PubMed  CAS  Google Scholar 

  14. Fallavollita JA, Canty Jr JM. Dysinnervated but viable myocardium in ischemic heart disease. J Nucl Cardiol. 2010;17:1107–15.

    Article  PubMed  Google Scholar 

  15. Katsikis A, Ekonomopoulos G, Papaioannou S, Kouzoumi A, Koutelou M. Reversible reduction of cardiac sympathetic innervation after coronary artery bypass graft surgery: an observational study using serial iodine 123-labeled meta-iodobenzyl-guanidine (MIBG) imaging. J Thorac Cardiovasc Surg. 2012;144:210–6.

    Article  PubMed  Google Scholar 

  16. Chen LS, Zhou S, Fishbein MC, Chen PS. New perspectives on the role of autonomic nervous system in the genesis of arrhythmias. J Cardiovasc Electrophysiol. 2007;18:123–7.

    Article  PubMed  Google Scholar 

  17. • Akutsu Y, Kaneko K, Kodama Y, et al. Iodine-123mIBG imaging for predicting the development of atrial fibrillation. J Am Coll Cardiol Imaging. 2011;4:78–86. Interesting prospective study in patients with paroxysmal AF, potentially expanding clinical indications of 123 I-MIBG cardiac imaging for predicting development of permanent AF and HF plus permanent AF.

    Article  Google Scholar 

  18. Ungerer M, Bohm M, Elce J, et al. Altered expression of beta-adrenergic receptor kinase and beta-adrenergic receptors in the failing human heart. Circulation. 1993;87:454–63.

    Article  PubMed  CAS  Google Scholar 

  19. Henderson EB, Kahn JK, Corbett JR, et al. Abnormal I-123-MIBG myocardial wash-out and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy. Circulation. 1988;78:1192–9.

    Google Scholar 

  20. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370–80.

    Article  PubMed  CAS  Google Scholar 

  21. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.

    Article  PubMed  CAS  Google Scholar 

  22. Levy D, Kenchaiah S, Larson MG, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. 2002;347:1397–402.

    Article  PubMed  Google Scholar 

  23. Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J. 2008;29:1147–59.

    Article  PubMed  Google Scholar 

  24. •• Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55:2212–21. Multicenter, prospective trial providing validation of the independent prognostic value of HMR in assessing HF patients.

    Article  PubMed  Google Scholar 

  25. • Ketchum ES, Jacobson AF, Caldwell JH, et al. Selective improvement in Seattle heart failure model risk stratification using iodine-123 meta-iodobenzylguanidine imaging. J Nucl Cardiol. 2012;19:1007–16. Substudy of the ADMIRE-HF trial with complete 2-year follow-up survival analysis showing that late HMR adds meaningful prognostic information in HF patients when combined with other algorithms of risk assessment.

    Article  PubMed  Google Scholar 

  26. • Shah AM, Bourgoun M, Narula J, Jacobson AF, Solomon SD. Influence of ejection fraction on the prognostic value of sympathetic innervation imaging with iodine-123 MIBG in heart failure. JACC Cardiovasc Imaging. 2012;5:1139–46. Substudy of the ADMIRE-HF trial showing that in HF patients with NYHA class II-II the late HMR has the same predictive prognostic value across the LVEF spectrum.

    Article  PubMed  Google Scholar 

  27. Doi T, Nakata T, Hashimoto A, et al. Cardiac mortality assessment improved by evaluation of cardiac sympathetic nerve activity in combination with hemoglobin and kidney function in chronic heart failure patients. J Nucl Med. 2012;53:731–40.

    Article  PubMed  Google Scholar 

  28. Kasama S, Toyama T, Sumino H, et al. Prognostic value of serial cardiac MIBG imaging in patients with stabilized chronic heart failure and reduced left ventricular ejection fraction. J Nucl Med. 2008;49:907–14.

    Article  PubMed  Google Scholar 

  29. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33:1787–847.

    Google Scholar 

  30. Moss AJ, Hall WJ, Cannom DS, et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ven-tricular arrhythmia. Multicenter automatic defibrillator implantation trial investigators. N Engl J Med. 1996;335:1933–40.

    Article  PubMed  CAS  Google Scholar 

  31. Hohnloser SH, Connolly SJ, Kuck KH, et al. The defibrillator in acute myocardial infarction trial (DINAMIT): study protocol. Am Heart J. 2000;140:735–9.

    Article  PubMed  CAS  Google Scholar 

  32. Kadish A, Dyer A, Daubert JP, et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med. 2004;350:2151–8.

    Article  PubMed  CAS  Google Scholar 

  33. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–37.

    Article  PubMed  CAS  Google Scholar 

  34. Kelesidis I, Travin MI. Use of cardiac radionuclide imaging to identify patients at risk for arrhythmic sudden cardiac death. J Nucl Cardiol. 2012;19:142–52.

    Article  PubMed  Google Scholar 

  35. Barron HV, Viskin S. Autonomic markers and prediction of cardiac death after myocardial infarction. Lancet. 1998;351:461–2.

    Article  PubMed  CAS  Google Scholar 

  36. Bax JJ, Kraft O, Buxton AE, et al. 123I-mIBG Scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study. Circ Cardiovasc Imaging. 2008;1:131–40.

    Article  PubMed  Google Scholar 

  37. Tamaki S, Yamada T, Okuyama Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol. 2009;53:426–35.

    Article  PubMed  CAS  Google Scholar 

  38. Nishisato K, Hashimoto A, Nakata T, et al. Impaired cardiac sympathetic innervation and myocardial perfusion are related to lethal arrhythmia: quantification of cardiac tracers in patients with ICDs. J Nucl Med. 2010;51:1241–9.

    Article  PubMed  Google Scholar 

  39. • Boogers MJ, Borleffs CJ, Henneman MM, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol. 2010;55:2769–77. Comprehensive study reporting that late 123 I-MIBG SPECT summed defect score may improve risk stratification for arrhythmic death in patients with advanced HF who have an indication for ICD treatment.

    Article  PubMed  Google Scholar 

  40. Marshall A, Cheetham A, George RS, Mason M, Kelion AD. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts ventricular arrhythmia in heart failure patients receiving an implantable cardioverter-defibrillator for primary prevention. Heart. 2012;98:1359–65.

    Article  PubMed  Google Scholar 

  41. Higuchi K, Toyama T, Tada H, Naito S, Ohshima S, Kurabayashi M. Usefulness of biventricular pacing to improve cardiac symptoms, exercise capacity and sympathetic nerve activity in patients with moderate to severe chronic heart failure. Circ J. 2006;70:703–9.

    Article  PubMed  Google Scholar 

  42. Burri H, Sunthorn H, Somsen A, et al. Improvement in cardiac sympathetic nerve activity in responders to resynchronization therapy. Europace. 2008;10:374–8.

    Article  PubMed  Google Scholar 

  43. Shinohara T, Takahashi N, Saito S, et al. Effect of cardiac resynchronization therapy on cardiac sympathetic nervous dysfunction and serum C-reactive protein level. Pacing Clin Electrophysiol. 2011;34:1225–30.

    Article  PubMed  Google Scholar 

  44. Nishioka SA, Martinelli Filho M, Brandão SC, et al. Cardiac sympathetic activity pre and post resynchronization therapy evaluated by 123I-MIBG myocardial scintigraphy. J Nucl Cardiol. 2007;14:852–9.

    Article  PubMed  Google Scholar 

  45. Cha YM, Chareonthaitawee P, Dong YX, et al. Cardiac sympathetic reserve and response to cardiac resynchronization therapy. Circ Heart Fail. 2011;4:339–44.

    Article  PubMed  Google Scholar 

  46. Tanaka H, Tatsumi K, Fujiwara S, et al. Effect of left ventricular dyssynchrony on cardiac sympathetic activity in heart failure patients with wide QRS duration. Circ J. 2012;76:382–9.

    Article  PubMed  Google Scholar 

  47. Drakos SG, Athanasoulis T, Malliaras KG, et al. Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. J Am Coll Cardiol Imaging. 2010;3:64–70.

    Article  Google Scholar 

  48. Flotats A, Carrió I. The role of nuclear medicine technique in evaluating electrophysiology in diabetic hearts especially with 123I-MIBG cardiac SPECT imaging. Minerva Endocrinol. 2009;34:263–71.

    PubMed  CAS  Google Scholar 

  49. Thackeray JT, Radziuk J, Harper ME, et al. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia. Cardiovasc Diabetol. 2011;10:75.

    Article  PubMed  CAS  Google Scholar 

  50. • Gerson MC, Caldwell JH, Ananthasubramaniam K, et al. Influence of diabetes mellitus on prognostic utility of imaging of myocardial sympathetic innervation in heart failure patients. Circ Cardiovasc Imaging. 2011;4:87–93. Substudy of the ADMIRE HF trial confirming the high risk of diabetic subjects with impaired cardiac sympathetic nerve function.

    Article  PubMed  Google Scholar 

  51. Rascol O, Schelosky L. 123I-metaiodobenzylguanidine scintigraphy in Parkinson's disease and related disorders. Mov Disord. 2009;24 Suppl 2:S732–41.

    Article  PubMed  Google Scholar 

  52. Orimo S, Suzuki M, Inaba A, Mizusawa H. 123I-MIBG myocardial scintigraphy for differentiating Parkinson's disease from other neurodegenerative parkinsonism: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2012;18:494–500.

    Article  PubMed  Google Scholar 

  53. Treglia G, Cason E, Giordano A. Diagnostic performance of myocardial innervation imaging using MIBG scintigraphy in differential diagnosis between dementia with Lewy bodies and other dementias: a systematic review and a meta-analysis. J Neuroimaging. 2012;22:111–7.

    Article  PubMed  Google Scholar 

  54. • Bengel FM. Imaging targets of the sympathetic nervous system of the heart: translational considerations. J Nucl Med. 2011;52:1167–70. Good review to understand the basic science behind innervation cardiac imaging.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

Albert Flotats declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Flotats.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flotats, A. Advances in Molecular Imaging: Innervation Imaging. Curr Cardiovasc Imaging Rep 6, 346–353 (2013). https://doi.org/10.1007/s12410-013-9209-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-013-9209-1

Keywords

Navigation