Skip to main content

Advertisement

Log in

Current Clinical Applications and Next Steps for Cardiac Innervation Imaging

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Autonomic innervation is crucial for regulating cardiac function. Sympathetic innervation imaging with 123I-mIBG and analogous PET tracers assesses disease in ways that differ from customary methods. This review describes practical use in various clinical scenarios, discusses recent guidelines, presents new data confirming risk stratification power, describes an ongoing prospective study, and looks forward to wider use in patient management.

Recent Findings

ASNC 123I-mIBG guidelines are available, expanding on European guidelines. ADMIRE-HF patient follow-up increased to 2 years in ADMIRE HFX, demonstrating independent mortality risk reclassification. ADMIRE-HF findings were substantiated in a Japanese consortium study and in the PAREPET 11C-HED PET study. Exciting potential uses of adrenergic imaging are management of LVADs and VT ablation. CZT cameras provide advantages, but derived parameters differ from Anger camera values.

Summary

Independent risk stratification utility of adrenergic imaging with 123I-mIBG and PET tracers is continuously being confirmed. An ongoing prospective randomized study promises to establish patient management utility. There is potential for wider use and improved images with newer cameras and PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bell DR: Control mechanisms in circulatory function. In: Rhoades RA, Bell DR, editors. Medical Physiology: Principles of Clinical Medicine. 4th edition. Philadelphia: Lippincott, Williams & Wilkins, 2013: pp. 317–320.

  2. Colucci WS. Pathophysiology of heart failure: Neurohumoral adaptations. http://www.uptodate.com/contents/pathophysiology-of-heart-failure-neurohumoral-adaptations, accessed 4/27/2016; topic last updated August 11, 2015.

  3. Travin MI. Application of cardiac neurohormonal imaging to heart failure, transplantation, and diabetes. Curr Cardiovasc Imaging Rep 2015; 8:8 (DOI 10.1007/s12410-015-9323-3.

  4. Francis GS. Neurohormonal control of heart failure. Cleve Clin J Med. 2011;78:S75–9.

    Article  PubMed  Google Scholar 

  5. Lautamäki R, Tipre D, Bengel FM. Cardiac sympathetic neuronal imaging using PET. Eur J Nucl Med Mol Imaging. 2007;34:S74–85.

    Article  PubMed  Google Scholar 

  6. Carrió I. Cardiac neurotransmission imaging. J Nucl Med. 2001;42:1062–76.

    PubMed  Google Scholar 

  7. Zipes DP. Autonomic modulation of cardiac arrhythmias. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 2nd ed. Philadelphia: WB Saunders Company; 1995. p. 441–2.

    Google Scholar 

  8. Kapa S. Somers VK. In: Libby P, Bonow RO, Mann DL, Zipes DP, Braunwald E, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 8th ed. Philadelphia: Saunders Elsevier; 2008. p. 2171–83.

    Google Scholar 

  9. Flotats A, Carrió I. Cardiac neurotransmission SPECT imaging. J Nucl Cardiol. 2004;11:587–602.

    Article  PubMed  Google Scholar 

  10. Verrier RL, Antzelevich C. Autonomic aspects of arrhythmogenesis: the enduring and the new. Curr Opin Cardiol. 2004;19:2–11.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Haider N, Baliga RR, Chandrashekhar Y, Narula J. Adrenergic excess, hNET1 down-regulation, and compromised mIBG uptake in heart failure poverty in the presence of plenty. J Am Coll Cardiol Img. 2010;3:71–5.

    Article  Google Scholar 

  12. Hattori N, Schwaiger M. Metaiodobenzylguanidine scintigraphy of the heart. What have we learned clinically? Eur J Nucl Med. 2000;27:1–6.

    Article  CAS  PubMed  Google Scholar 

  13. Raffel DM, Wieland DM. Development of mIBG as a cardiac innervation imaging agent. J Am Coll Cardiol Img. 2010;3:111–6.

    Article  Google Scholar 

  14. Bengel FM, Schwaiger M. Assessment of cardiac sympathetic neuronal function using PET imaging. J Nucl Cardiol. 2004;11:603–16.

    Article  PubMed  Google Scholar 

  15. Luisi AJ, Suzuki G, deKemp R, Haka MS, Toorongian SA, Canty JM. Regional 11C-hydroxyephedrine retention in hibernating myocardium: chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med. 2005;46:1368–74.

    CAS  PubMed  Google Scholar 

  16. • Sinusas AJ, Lazewatsky J, Brunetti J, Heller G, Srivastava A, Liu Y, Sparks R, Puretskiy A, Lin S, Crane P, Carson RE, Lee LV. Biodistribution and radiation dosimetry of LMI1195: first-in-human study of a novel 18F-labeled tracer for imaging myocardial innervation. J Nucl Med. 2014;55:1–7. Shows potential feasibility of an 18 F-based adrenergic radiotracer

  17. •• Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: stress, protocols, and tracers. J Nucl Cardiol. 2016;23:606–39. Contains American Society of Nuclear Cardiology guidelines for 123 I-mIBG that complement and expand on 2010 European Association of Nuclear Medicine Cardiovascular Committee and European Council of Nuclear Cardiology guidelines

  18. Flotats A, Carrió I, Agostini D, Le Guludec D, Marcassa C, Schaffers M, et al. Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging. 2010;37:1802–12.

    Article  PubMed  Google Scholar 

  19. FDA package insert: http://medlibrary.org/lib/rx/meds/adreview-1/ accessed 5/11/2016.

  20. • Gimelli A, Liga R, Giorgetti A, Marzullo P. Assessment of myocardial adrenergic innervation with a solid-state dedicated cardiac cadmium-zinc-telluride camera: first clinical experience. Eur heart journal-CV imaging 2014; 15: 575–585. Presented potential advantages of imaging 123 I-mIBG on a CZT solid state camera, including dual isotope imaging at the same sitting, lower patient radiation exposure, and high quality tomographic images, with speculation about potential to enhance risk stratification .

  21. Jacobson AF, Senior R, Cerqueira MD. Myocardial iodine 123 meta-iodobenzylguanidine imaging and cardiac events in heart failure: results of the prospective ADMIRE-HF (Adreview myocardial imaging for risk evaluation in heart failure). J Am Coll Cardiol. 2010;55:2212–21.

    Article  PubMed  Google Scholar 

  22. Jacobson AF, Lombard J, Banerjee G, Camici PG. 123I-mIBG scintigraphy to predict risk for adverse cardiac outcomes in heart failure patients: design of two prospective multicenter international trials. J Nucl Cardiol. 2009;16:113–21.

    Article  PubMed  Google Scholar 

  23. Nakajima K, Okuda K, Yoshimura M, Matsuo S, Wakabayashi H, Imanishi Y, et al. Multicenter cross-calibration of I-123 metaiodobenzylguanidine heart-to-mediastinum ratios to overcome camera-collimator variations. J Nucl Cardiol. 2014;21:970–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. • Bellevre D, Manrique A, Legallois D, Bross S, Baavour R, Roth N, et al. First determination of the heart-to-mediastinum ratio using cardiac dual isotope (123I-MIBG/99mTc-tetrofosmin) CZT imaging in patients with heart failure: the ADRECARD study. Eur J Nucl Med Mol Imaging. 2015;42:1912–9. Demonstrated that determinating an HMR during dual isotope adrenergic ( 123 I-mIBG) and perfusion ( 99m Tc-tetrofosmin) imaging on a CZT camera is feasible, but that values for HMR are different from those obtained using a standard Anger camera

  25. Morozumi T, Kusuoka H, Fukuchi K, Tani A, Uehara T, Matsuda S, et al. Myocardial iodine-123-metaiodobenzylguanidine images and autonomic nerve activity in normal subjects. J Nucl Med. 1997;38:49–52.

    CAS  PubMed  Google Scholar 

  26. Tamaki S, Yamada T, Okuyama Y, Morita T, Sanada S, Tsukamoto Y, Masuda M, Okuda K, Iwasaki Y, Yasui T, Hori M, Fukunami M. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol. 2009;53:426–35.

    Article  CAS  PubMed  Google Scholar 

  27. Minardo JD, Tuli MM, Mock BH, Weiner RE, Pride HP, Wellmann HN, Zipes DP. Scintigraphic and electrophysiologic evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation. 1988;78:1008–19.

    Article  CAS  PubMed  Google Scholar 

  28. Fallavollita JA, Canty JM. Dysinnervated but viable myocardium in ischemic heart disease. J Nucl Cardiol. 2010;17:1107–15.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res. 2004;95:754–63.

    Article  CAS  PubMed  Google Scholar 

  30. Boogers MJ, Borleffs CJ, Henneman MM, van Bommel RJ, Van Ramshorst JV, Boersma E, Dibbets-Schneider P, Stokkel MP, van der Wall EE, Schalij MJ, Bax JJ. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol. 2010;55:2769–77.

    Article  PubMed  Google Scholar 

  31. Clements IP, Garcia EV, Chen J, Folks RD, Butler J, Jacobson AF. Quantitative iodine-123-metaiodobenzylguanidine (MIBG) SPECT imaging in heart failure with left ventricular systolic dysfunction: development and validation of automated procedures in conjunction with technetium-99m tetrofosmin myocardial perfusion SPECT. J Nucl Cardiol. 2016;23:425–35.

    Article  PubMed  Google Scholar 

  32. Travin MI. It’s not all in the numbers. J Nucl Cardiol. 2016;23:436–41. doi:10.1007/s12350-015-0097-4.

    Article  PubMed  Google Scholar 

  33. Schofer J, Spielmann R, Schuchert A, Weber K, Schlüter M. Iodine-123 meta-iodobenzylguanidine scintigraphy: a noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1988;12:1252–8.

    Article  CAS  PubMed  Google Scholar 

  34. Merlet P, Valette H, Dubois-Randé J, Moyse D, Duboc D, Dove P, Bourguignon MH, Benvenuti C, Duval AM, Agostini D, Loisance D, Castaigne A, Syrota A. Prognostic value of cardiac metaiodobenzylguanidine in patients with heart failure. J Nucl Med. 1992;33:471–7.

    CAS  PubMed  Google Scholar 

  35. Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J. 2008;29:1147–59.

    Article  PubMed  Google Scholar 

  36. Ketchum ES, Jacobson AF, Caldwell JH, Senior R, Cerqueira MD, Thomas GS, et al. Selective improvement in Seattle heart failure model risk stratification using iodine-123 meta-iodobenzylguanidine imaging. J Nucl Cardiol. 2012;19:1007–16.

    Article  PubMed  Google Scholar 

  37. •• Narula J, Gerson M, Thomas GS, Cerqueira MD, Jacobson AF. 123I-MIBG imaging for prediction of mortality and potentially fatal events in heart failure: the ADMIRE-HFX study. J Nucl Med. 2015;56:1011–8. Increased median follow-up time of ADMIRE-HF patients from 17 months to 24 months, and demonstrated that when added to a proportional hazards model containing BNP and LVEF, HMR provided a net reclassification improvement for prediction of mortality and mortality equivalent events

    Article  PubMed  Google Scholar 

  38. Senior R, Friberg L, Travin M, Hudnut F, Chandna H, Agostini D, Ananth K, Miyamoto M, Shah M, Koren M, von Dahl J, Levy W, on behalf of the ADMIRE-HF investigators’ group. Prognostic usefulness of AdreView scintigraphy in identifying heart failure patients at lower risk of death during 5-year follow-up in the ADMIRE-HF study. 1262–238 (ACC 2016 abstract).

  39. •• Nakata T, Nakajima K, Yamashina S, Yamada T, Momose M, Kasama S, et al. A pooled analysis of multicenter cohort studies of I-123-mIBG cardiac sympathetic innervation imaging for assessment of long-term prognosis in chronic heart failure. J Am Coll Cardiol Img. 2013;6:772–84. Independently confirmed ADMIFE-HF findings of significant and independent risk stratification utility by 123 I-mIBG image results in patients with heart failure, but also showed utility in patients with LVEFs >35%

    Article  Google Scholar 

  40. Shah AM, Bourgoun M, Narula J, Jacobson AF, Solomon SD. Influence of ejection fraction on the prognostic value of sympathetic innervation imaging with iodine-123 MIBG in heart failure. J Am Coll Cardiol Img. 2012;5:1139–46.

    Article  Google Scholar 

  41. Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiac arrhythmias. N Engl J Med. 2001;345:1473–82.

    Article  CAS  PubMed  Google Scholar 

  42. Matsui T, Tsutamoto T, Maeda K, Kusukawa J, Kinoshita M. Prognostic value of repeated 123I-metaiodobenzylguanidine imaging in patients with dilated cardiomyopathy with congestive heart failure before and after optimized treatments—comparison with neurohumoral factors. Circ J. 2002;66:537–43.

    Article  PubMed  Google Scholar 

  43. Nakajima K, Nakata T, Matsuo S, Jacobson AF. Creating of mortality risk charts using 123I meta-iodobenzylguanidine heart-to-mediastinum ratio in patients with heart failure: 2- and 5-year risk models. Eur Heart J CV Imaging. 2016; doi:10.1093/ehjci/jev322.

    Google Scholar 

  44. Verschure DO, Veltman CE, Manrique A, Somsen GA, Koutelou M, Katsikis A, et al. For what endpoint does myocardial 123I-MIBG scintigraphy have the greatest prognostic value in patients with chronic heart failure? Results of a pooled individual patient data meta-analysis. Eur Heart J Cardiovasc Imaging. 2014;15:996–1003.

    Article  PubMed  Google Scholar 

  45. Travin MI, Henzlova MJ, van Eck-Smit BLF, Jain J, Carrió I, Folks RD, Garcia EV, Jacobson AF, Verberne HJ. Assessment of 123I-mIBG and 99mTc-tetrofosmin single-photon emission computed tomographic images for the prediction of arrhythmic events in patients with ischemic heart failure. J Nucl Cardiol. 2016;23 doi:10.1007/s12350-015-0336-8.

  46. Tracy CM, Epstein AE, Darbar D, DiMarco JP, Dunbar SB, Estes 3rd NAM, et al. 2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2012;60:1297–313.

    Article  PubMed  Google Scholar 

  47. Chen J, Boogers MM, Bax JJ, Soman P, Garcia EV. The use of nuclear imaging for cardiac resynchronization therapy. Curr Cardiol Rep. 2010;12:185–91.

    Article  PubMed  PubMed Central  Google Scholar 

  48. D’Orio Nishioka SA, Filho MM, Soares Brandāo SC, Clementina Giorgi M, Vieira MLC, Costa R, Mathias W, Cláudio MJ. Cardiac sympathetic activity pre and post resynchronization therapy evaluated by 123I-MIBG myocardial scintigraphy. J Nucl Cardiol. 2007;14:852–9.

    Article  Google Scholar 

  49. Tanaka H, Tatsumi K, Fujiwara S, Tsuji T, Kaneko A, Ryo K, et al. Effect of left ventricular dyssynchrony on cardiac sympathetic activity in heart failure patients with wide QRS duration. Circ J. 2012;76:382–9.

    Article  PubMed  Google Scholar 

  50. Ambardekar AV, Buttrick PM. Reverse remodeling with left ventricular assist devices: a review of clinical, cellular, and mechanistic effects. Circ Heart Fail. 2011;4:224–33.

    Article  PubMed  PubMed Central  Google Scholar 

  51. • Drakos SG, Athanasoulis T, Malliaras KG, Terrovitis JV, Diakos N, Koudoumas G, et al. Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. J Am Coll Cardiol Img. 2010;3:64–70. A small, pilot study showing that 123 I-mIBG imaging may help identify patients who are candidates for LVAD explantation.

    Article  Google Scholar 

  52. • George RS, Birks EJ, Cheetham A, Webb C, Smolenski RT, Khaghani A, et al. The effect of long-term left ventricular assist device support on myocardial sympathetic activity in patients with non-ischaemic dilated cardiomyopathy. Eur J Heart Fail. 2013;15:1035–43. A small, pilot study showing that 123 I-mIBG imaging may help identify patients who are candidates for LVAD explantation.

    Article  CAS  PubMed  Google Scholar 

  53. Imamura T, Kinugawa K, Nitta D, Kinoshita O, Nawata K, Ono M. Preoperative iodine-123 meta-iodobenzylguanidine imaging is a novel predictor of left ventricular reverse remodeling during treatment with a left ventricular assist device. J Artif Organs. 2016;19:29–36.

    Article  PubMed  Google Scholar 

  54. Barron HV, Lesh MD. Autonomic nervous system and sudden cardiac death. J Am Coll Cardiol. 1996;27:1053–60.

    Article  CAS  PubMed  Google Scholar 

  55. Zipes DP, Camm AJ, Borggrefe M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death—executive summary: a report of the American College of Cardiology/American Heart Association task force and the European Society of Cardiology Committee for practice guidelines (writing committee to develop guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death). J Am Coll Cardiol. 2006;48:1064–108.

    Article  Google Scholar 

  56. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2013;128:e240–327.

    Article  PubMed  Google Scholar 

  57. Buxton AE, Lee KL, Hafley GE, Pires LA, Fisher JD, Gold MR, et al. Limitations of ejection fraction for prediction of sudden death risk in patients with coronary artery disease: lessons from the MUSTT study. J Am Coll Cardiol. 2007;50:1150–7.

    Article  PubMed  Google Scholar 

  58. Myerburg RJ. Implantable cardioverter-defibrillators after myocardial infarction. N Engl J Med. 2008;359:2245–53.

    Article  CAS  PubMed  Google Scholar 

  59. Kremers MS, Hammill SC, Berul CI, Koutras C, Curtis JS, Wang Y, Beachy J, Blum Meisnere L, Conyers del M, Reynolds MR, Heidenreich PA, Al-Khatib SM, Pina IL, Blake K, Norine Walsh M, Wilkoff BL, Shalaby A, Masoudi FA, Rumsfeld J. The National ICD Registry Report: version 2.1 including leads and pediatrics for years 2010 and 2011. Heart Rhythm 2013; 10: e59–65

  60. Sanders GD, Hlatky MA, Owens DK. Cost-effectiveness of implantable cardioverter-defibrillators. N Engl J Med. 2005;353:1471–80.

    Article  CAS  PubMed  Google Scholar 

  61. Lee DS, Krahn AD, Healey JS, et al. Evaluation of early complications related to de novo cardioverter defibrillator implantation insights from the Ontario ICD database. J Am Coll Cardiol. 2010;55:774–82.

    Article  PubMed  Google Scholar 

  62. Al-Khatib SM, Hellkamp A, Curtis J, et al. Non-evidence-based ICD implantations in the United States. JAMA. 2011;305:43–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Arora R, Ferrick KJ, Nakata T, Kaplan RC, Rozengarten M, Latif F, et al. I-123 MIBG imaging and heart rate variability analysis to predict the needs for an implantable cardioverter defibrillator. J Nucl Cardiol. 2003;10:121–31.

    Article  PubMed  Google Scholar 

  64. Nagahara D, Nakata T, Hashimoto A, Wakabayashi T, Kyuma M, Noda R, Shimoshige S, Uno K, Tsuchihashi K, Shimamoto K. Predicting the need for an implantable cardioverter defibrillator using cardiac metaiodobenzylguanidine activity together with plasma natriuretic peptide concentration or left ventricular function. J Nucl Med. 2008;49:225–33.

    Article  PubMed  Google Scholar 

  65. •• Hachamovitch R, Nutter B, Menon V, Cerqueira MD. Predicting risk versus potential survival benefit using 123I–mIBG imaging in patients with systolic dysfunction eligible for implantable cardiac defibrillator implantation. Analysis of data from the prospective ADMIRE-HF study. Circ Cardiovasc Imaging 2015; 8: e003110. DOI: 10.1161/CIRCIMAGING/.114.003110. An interesting study assessing arrhythmic events in ADMIRE-HF who did not have an ICD at study onset, finding that subsequent ICD placement was most cost-effective in patients with an intermediately decreased HMR.

  66. •• Fallavollita JA, Heavey BM, Luisi Jr AJ, Michalek SM, Baldwa S, Mashtare TL, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63:141–9. A rigorous study of patients with hibernating myocardium showing that adrenergic imaging, here with the PET tracer 11 C-HED, is effective at identifying patient at increased risk of life threatening arrhythmic events.

    Article  PubMed  Google Scholar 

  67. •• Clin trials: https://www.clinicaltrials.gov/ct2/show/NCT02656329, accessed 7/15/2016. An ongoing prospective randomized trial designed to establish utility of 123 I-mIBG imaging for patient management in terms of more effectively selecting patients for ICD implantation.

  68. Sciammarella MG, Gerson M, Buxton AE, Bartley SC, Doukky R, Merlino DA, et al. ASNC/SNMMI model coverage policy: myocardial sympathetic innervation imaging: iodine-123 meta-iodobenzylguanidine (123I-mIBG). J Nucl Cardiol. 2015;22:804–11.

    Article  CAS  PubMed  Google Scholar 

  69. Mitrani RD, Klein LS, Miles WM, Hackett FK, Burt RW, Wellman HN, Zipes DP. Regional cardiac sympathetic denervation in patients with ventricular tachycardia in the absence of coronary artery disease. J Am Coll Cardiol. 1993;22:1344–53.

    Article  CAS  PubMed  Google Scholar 

  70. Gill JS, Hunter GJ, Gane J, Ward DE, Camm AJ. Asymmetry of cardiac [123I] meta-iodobenzyl-guanidine scans in patients with ventricular tachycardia and a “Clinically Normal” heart. Br Heart J. 1993;69:6–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wichter T, Matheja P, Eckardt L, Kies P, Schäfers K, Schulze-Bahr E, Haverkamp W, Borggrefe M, Schober O, Breithardt G, Schäfers M. Cardiac autonomic dysfunction in Brugada syndrome. Circulation. 2002;105:702–6.

    Article  PubMed  Google Scholar 

  72. Paul M, Wichter T, Kies P, Gerss J, Wollmann C, Rahbar K, et al. Cardiac sympathetic dysfunction in genotyped patients with arrhythmogenic right ventricular cardiomyopathy and risk of recurrent ventricular tachyarrhythmias. J Nucl Med. 2011;52:1559–65.

    Article  CAS  PubMed  Google Scholar 

  73. Miranda CH, Figueiredo AB, Maciel BC, Marin-Neto JA, Simoes MV. Sustained ventricular tachycardia is associated with regional myocardial sympathetic denervation assessed with 123I-metaiodobenzylguanidine in chronic Chagas cardiomyopathy. J Nucl Med. 2011;52:504–10.

    Article  CAS  PubMed  Google Scholar 

  74. Gadioli LP, Miranda CH, Pintya AO, de Figueiredo AB, Schmidt A, et al. The severity of ventricular arrhythmia correlates with the extent of myocardial sympathetic denervation, but not with myocardial fibrosis extent in Chagas cardiomyopathy: Chagas disease, denervation, and arrhythmias. J Nucl Cardiol. 2016 Jul;5 [Epub ahead of print] doi:10.1007/s12350-016-0556-6.

  75. Bax JJ, Kraft O, Buxton AE, Fjeld JG, Parizek P, Agostini D, Knuuti J, Flotats A, Arrighi J, Muxi A, Alibelli MJ, Banerjee G, Jacobson AF. 123 I-MIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study. Circ Cardiovasc Imaging. 2008;1:131–40.

    Article  PubMed  Google Scholar 

  76. Roes SD, Borleffs CJ, van der Geest RJ, Westenberg JJ, Marsan NA, Kaandorp TA, Reiber JH, Zeppenfeld K, Lamb HJ, de Roos A, Schalij MJ, Bax JJ. Infarct tissue heterogeneity assessed with contrast-enhanced MRI predicts spontaneous ventricular arrhythmias in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator. Circ Cardiovasc Imaging. 2009;2:183–90.

    Article  PubMed  Google Scholar 

  77. • Zhou Y, Zhou W, Folks RD, Manatunga DN, Jacobson AF, Bax JJ, Garcia EV, Chen J. I-123 mIBG and Tc-99m myocardial SPECT imaging to predict inducibility of ventricular arrhythmia on electrophysiology testing: a retrospective analysis. J Nucl Cardiol. 2014;21:913–20. Novel use of adrenergic imaging to assess arrhythmic potential of mixed tissue located in zones that border infarct or scar

    Article  PubMed  Google Scholar 

  78. •• Klein T, Abdulghani M, Smith M, Huang R, Asoglu R, Remo BF, Turgeman A, Mesubi O, Sidhu S, Synowski S, Saliaris A, See V, Shorofsky S, Chen W, Dilsizian V, Dickfeld T. Three-dimensional 123I-meta-iodobenzylguanidine cardiac innervation maps to assess substrate and successful ablation sites for ventricular tachycardia: a feasibility study for a novel paradigm of innervation imaging. Circ Arrhythm Electrophysiol. 2015;8:583–91. Demonstrated an exciting novel use of 123 I-mIBG -management of patients with intractable ventricular arrhythmias by enhancing detection of successful VT ablation sites.

    Article  PubMed  Google Scholar 

  79. Flotats A, Carrió I. Value of radionuclide studies in cardiac transplantation. Ann Nucl Med. 2006;20:13–21.

    Article  CAS  PubMed  Google Scholar 

  80. Di Carli MF, Tobes MC, Mangner T, Levine AB, Muzik O, Chakroborty P, Levine TB. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med. 1997;336:1208–15.

    Article  CAS  PubMed  Google Scholar 

  81. Bengel FM, Ueberfuhr P, Schiepel N, Nekolla SG, Reichart B, Schwaiger M. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med. 2001;345:731–8.

    Article  CAS  PubMed  Google Scholar 

  82. • Bravo PE, Lautamäki R, Carter D, Holt DP, Nekolla SG, Dannals RF, et al. Mechanistic insights into sympathetic neuronal regeneration. Multitracer molecular imaging of catecholamine handling after cardiac transplantation. Circ Cardiovasc Imaging 2015; 8:e003507. DOI: 10.1161/CIRCIMAGING. 115.003507. Saw differences in uptake of various PET adrenergic tracers in post-transplant patients. Indicates that the individual tracers depict different aspect of cardiac autonomic pathophysiology, and thus may provide more detailed understanding of pathophysiology in other clinical settings.

  83. Henneman MM, Bengel FM, van der Wall EE, Knuuti J, Bax JJ. Cardiac neuronal imaging: application in the evaluation of cardiac disease. J Nucl Cardiol. 2008;3:442–55.

    Article  Google Scholar 

  84. Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: supersensitivity that may be arrhythmogenic. Circulation. 1987;75:877–87.

    Article  CAS  PubMed  Google Scholar 

  85. Zipes DP. Influence of myocardial ischemia and infarction on autonomic innervation of heart. Circulation. 1990;82:1095–105.

    Article  CAS  PubMed  Google Scholar 

  86. McGhie AI, Corbett JR, Akers MS, Kulkarni P, Sills MN, Kremers M, et al. Regional cardiac adrenergic function using I-123 MIBG SPECT imaging after acute myocardial infarction. Am J Cardiol. 1991;67:236–42.

    Article  CAS  PubMed  Google Scholar 

  87. Sasano T, Abraham R, Chang KC, Ashikaga H, Mills KJ, Holt DP, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol. 2008;51:2266–75.

    Article  PubMed  Google Scholar 

  88. Simões MV, Barthel P, Matsunari I, Nekolla SG, Schömig A, Schwaiger M, et al. Presence of sympathetically denervated but viable myocardium and its electrophysiologic correlates after early revascularised, acute myocardial infarction. Eur Heart J. 2004;25:551–7.

    Article  PubMed  Google Scholar 

  89. Matsunari I, Schricke U, Bengel FM, Haase H, Barthel P. Schmidt G, et al. Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes: circulation. 2000;101:2579–85.

    CAS  PubMed  Google Scholar 

  90. D’estanque E, Hedon C, Lattuca B, Bourdon A, Benkiran M, Verd A, et al. Optimization of a simultaneous dual isotope Tl/123IMIBG myocardial SPECT imaging protocol with a CZT camera for trigger zone assessment after myocardial infarction for routine clinical settings: are delayed acquisition and scatter correction necessary? J Nucl Cardiol. 2016; doi:10.1007/s12350-016-0524-1.

    PubMed  Google Scholar 

  91. Langer A, Freeman MR, Josse RG, Armstrong PW. Metaiodobenzylguanidine imaging in diabetes mellitus assessment of cardiac sympathetic denervation and its relation to autonomic dysfunction and silent myocardial ischemia. J Am Coll Cardiol. 1995;25:610–8.

    Article  CAS  PubMed  Google Scholar 

  92. Hattori N, Tamaki N, Hayashi T, Masuda I, Kudoh T, Tateno M, Tadamura E, Yonekura Y, Nakao K, Konishi J. Regional abnormality of iodine-123-MIBG in diabetic hearts. J Nucl Med. 1996;37:1985–90.

    CAS  PubMed  Google Scholar 

  93. Stevens MJ, Raffel DM, Allman KC, Dayanikli F, Ficaro E, Sandford T, Wieland DM, Pfeifer MA, Schwaiger M. Cardiac sympathetic dysinnervation in diabetes. Implications for enhanced cardiovascular risk. Circulation. 1998;98:961–8.

    Article  CAS  PubMed  Google Scholar 

  94. Sacre JW, Franjic B, Jellis CL, Jenkins C, Coombes JS, Marwick TH. Association of cardiac autonomic neuropathy with subclinical myocardial dysfunction in type 2 diabetes. JACC Cardiovasc Imaging. 2010;3:1207–15.

    Article  PubMed  Google Scholar 

  95. Nagamachi S, Fujita S, Nishii R, Futami S, Tamura S, Mizuta M, et al. Prognostic value of cardiac I-123 metaiodobenzylguanidine imaging in patients with non-insulin-dependent diabetes mellitus. J Nucl Cardiol. 2006;13:34–42.

    Article  PubMed  Google Scholar 

  96. Gerson MC, Caldwell JH, Ananthasubramaniam K, Clements IP, Henzlova MJ, Amanullah A, Jacobson AF. Influence of diabetes mellitus on prognostic utility of imaging of myocardial sympathetic innervation in heart failure patients. Circ Cardiovasc Imaging. 2011;4:87–93.

    Article  PubMed  Google Scholar 

  97. Paolillo S, Rengo G, Pagano G, Pellegrino T, Savarese G, Femminella GD, et al. Impact of diabetes on cardiac sympathetic innervation in patients with heart failure: a 123I meta-iodobenzylguanidine (123I MIBG) scintigraphic study. Diabetes Care. 2013;36:2395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Olmos RA, ten Bokkel Huinink WW, ten Hoeve RFA, Van Tinteren H, Bruning PF, Van Vlies B, Hoefnagel CA. Adrenergic derangement by [123I]Metaiodobenzylguanidine scintigraphy. Eur J Cancer. 1995;31A:26–31.

    Article  Google Scholar 

  99. Carrió I, Estorch M, Berná L, López-Pousa J, Tabernero J, Torres G. Indium-111-antimyosin and iodine-123-MIBG studies in early assessment of doxorubicin cardiotoxicity. J Nucl Med. 1995;36:2024–49.

    Google Scholar 

  100. Bulten BF, Verberne HJ, Bellersen L, Oyen WJG, Sabaté-Llobera A, Mavinkurve-Groothuis AMC, et al. Relationship of promising methods in the detection of anthracycline-induced cardiotoxicity in breast cancer patients. Cancer Chemother Pharmacol. 2015;76:957–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark I. Travin.

Ethics declarations

Conflict of Interest

Mark I. Travin reports grants from the GE Healthcare.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travin, M.I. Current Clinical Applications and Next Steps for Cardiac Innervation Imaging. Curr Cardiol Rep 19, 1 (2017). https://doi.org/10.1007/s11886-017-0817-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0817-2

Keywords

Navigation