Skip to main content

Advertisement

Log in

New Hardware Solutions for Cardiac SPECT Imaging

  • Cardiac Nuclear Imaging (A Cuocolo, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Over the past decade, there has been intense interest in the modernization of scanners for cardiac SPECT imaging, with major changes in the design and functionality of hardware and software. This article aims at concisely reviewing recent developments in the field of detector materials, collimators, scanner configuration, and data acquisition strategies, as well as the new software reconstruction techniques typically associated with the new hardware. Since the new equipment and techniques can be employed either to reduce study acquisition time or to decrease radiation dose to the patient, the trade-off between these 2 desirable outcomes is also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Sorenson JA, Phelps ME. Physics in nuclear medicine. 2nd ed. Orlando: Grune & Stratton; 1987.

  2. DePuey EG. Advances in SPECT camera software and hardware: currently available and new on the horizon. J Nucl Cardiol. 2012;19:551–81.

    Article  PubMed  Google Scholar 

  3. Sodium Iodide scintillation material. 2013; Available at: http://www.detectors.saint-gobain.com/uploadedFiles/SGdetectors/Documents/Product_Data_Sheets/NaI%28Tl%29-Data-Sheet.pdf. Accessed 5 March 2013.

  4. Cesium Iodide scintillation material. 2013; Available at: http://www.detectors.saint-gobain.com/uploadedFiles/SGdetectors/Documents/Product_Data_Sheets/CsI%28Na%29-CsI%28Tl%29-Data-Sheet.pdf. Accessed 5 March 2013.

  5. Babla H, Bai CY, Conwell R. A triple-head solid state camera for cardiac single photon emission tomography (SPECT). Proc Soc Phot Opt Instrum Eng. 2006;6319–90M.

  6. Bai CY, Conwell R, Kindem J, et al. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans. J Nucl Cardiol. 2010;17:459–69.

    Article  PubMed  Google Scholar 

  7. Hawman PC, Haines EJ. The cardiofocal collimator: a variable-focus collimator for cardiac SPECT. Phys Med Biol. 1994;39:439–50.

    Article  PubMed  CAS  Google Scholar 

  8. Einstein AJ, Johnson LL, Bokhari S, et al. Agreement of visual estimation of coronary artery calcium from low-dose ct attenuation correction scans in hybrid PET/CT and SPECT/CT with standard Agatston score. J Am Coll Cardiol. 2010;56:1914–21.

    Article  PubMed  Google Scholar 

  9. Shepp LA, Logan BF. The Fourier reconstruction of a head section. IEEE Trans Nucl Sci. 1974;NS-21:21–43.

    Google Scholar 

  10. Ye J, Song X, Zhao Z, et al. Iterative SPECT reconstruction using matched filtering for improved image quality. IEEE Nucl Sci Symp Conf Rec. 2006;4:2285–7.

    Google Scholar 

  11. Vija A, Zeintl J, Chapman J, et al. Development of rapid SPECT acquisition protocol for myocardial perfusion imaging. IEEE Nucl Sci Symp Conf Rec. 2006;3:1811–6.

    Google Scholar 

  12. DePuey EG, Gadiraju R, Clark J, et al. Ordered subset expectation maximization and wide beam reconstruction "half-time" gated myocardial perfusion SPECT functional imaging: a comparison to "full-time" filtered backprojection. J Nucl Cardiol. 2008;15:547–63.

    Article  PubMed  Google Scholar 

  13. Tsui BMW, Hu HB, Gilland DR, Gullberg GT. Implementation of simultaneous attenuation and detector response correction in SPECT. IEEE Trans Nucl Sci. 1988;35:778–83.

    Article  CAS  Google Scholar 

  14. Borges-Neto S, Pagnanelli RA, Shaw LK, et al. Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99 m cardiac SPECT perfusion studies. J Nucl Cardiol. 2007;14:555–65.

    Article  PubMed  Google Scholar 

  15. Hannequin P, Mas J. Statistical and heuristic image noise extraction (SHINE): a new method for processing poisson noise in scintigraphic images. Phys Med Biol. 2002;47:4329–44.

    Article  PubMed  Google Scholar 

  16. Bai CY, Zeng GL, Gullberg GT, et al. Slab-by-slab blurring model for geometric point response correction and attenuation correction using iterative reconstruction algorithms. IEEE Trans Nucl Sci. 1998;45:2168–73.

    Article  Google Scholar 

  17. Slomka PJ, Nishina H, Berman DS, et al. "Motion-Frozen" display and quantification of myocardial perfusion. J Nucl Med. 2004;45:1128–34.

    PubMed  Google Scholar 

  18. Beller G. Will cardiac positron emission tomography ultimately replace SPECT for myocardial perfusion imaging? J Nucl Cardiol. 2009;16:841–3.

    Article  PubMed  Google Scholar 

  19. Pazhenkottil AP, Nkoulou R, Kuest S, et al. Absolute coronary blood flow and coronary flow reserve assessed by gated SPECT with cadium-zinc-telluride detectors: a direct comparison with 13N-Ammonia PET. J Am Coll Cardiol. 2013;61.

  20. Ben-Haim S, Murthy VL, Breault C, et al. Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study. J Nucl Med. 2013 (in press).

  21. Herzog BA, Buechel RR, Katz R, et al. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: optimized protocol for scan time reduction. J Nucl Med. 2010;51:46–51.

    Article  PubMed  Google Scholar 

  22. Germano G, Berman D. Physics and technical aspects of gated myocardial perfusion SPECT. In: Germano G, Berman D, editors. Clinical gated cardiac SPECT. 2nd ed. Oxford, UK: Blackwell Publishing; 2006. p. 27–45.

    Chapter  Google Scholar 

  23. Slomka P, Patton J, Berman D, Germano G. Digital/fast SPECT: systems and software. In: Zaret BL, Beller GA, editors. Clinical nuclear cardiology, 4th ed. Philadelphia: Elsevier Mosby; 2010. p. 132–48.

  24. Slomka PJ, Dey D, Duvall WL, et al. Advances in nuclear cardiac instrumentation with a view towards reduced radiation exposure. Curr Cardiol Rep. 2012;14:208–16.

    Article  PubMed  Google Scholar 

  25. Herzog BA, Buechel RR, Husmann L, et al. Validation of CT attenuation correction for high-speed myocardial perfusion imaging using a novel cadmium-zinc-telluride detector technique. J Nucl Med. 2010;51:1539–44.

    Article  PubMed  Google Scholar 

  26. Buechel RR, Herzog BA, Husmann L, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation. Eur J Nucl Med Mol Imaging. 2010;37:773–8.

    Article  PubMed  Google Scholar 

  27. Maddahi J, Mendez R, Mahmarian JJ, et al. Prospective multicenter evaluation of rapid, gated SPECT myocardial perfusion upright imaging. J Nucl Cardiol. 2009;16:351–7.

    Article  PubMed  Google Scholar 

  28. Esteves FP, Raggi P, Folks RD, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol. 2009;16:927–34.

    Article  PubMed  Google Scholar 

  29. Sharir T, Ben-Haim S, Merzon K, et al. High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector Anger camera imaging. JACC-Cardiovasc Imaging. 2008;1:156–63.

    Article  PubMed  Google Scholar 

  30. Sharir T, Slomka PJ, Hayes SW, et al. Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol. 2010;55:1965–74.

    Article  PubMed  Google Scholar 

  31. DePuey EG, Bommireddipalli S, Clark J, et al. Wide beam reconstruction "quarter-time" gated myocardial perfusion SPECT functional imaging: a comparison to "full-time" ordered subset expectation maximum. J Nucl Cardiol. 2009;16:736–52.

    Article  PubMed  Google Scholar 

  32. Bateman TM, Heller GV, McGhie AI, et al. Multicenter investigation comparing a highly efficient half-time stress-only attenuation correction approach against standard rest-stress Tc-99 m SPECT imaging. J Nucl Cardiol. 2009;16:726–35.

    Article  PubMed  Google Scholar 

  33. Duvall WL, Croft LB, Ginsberg ES, et al. Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J Nucl Cardiol. 2011;18:847–57.

    Article  PubMed  Google Scholar 

  34. •• Nakazato R, Tamarappoo BK, Kang XP, et al. Quantitative upright-supine high-speed SPECT myocardial perfusion imaging for detection of coronary artery disease: correlation with invasive coronary angiography. J Nucl Med. 2010;51:1724–31. Demostration of the incremental diagnostic value of the 2-position imaging protocol for the solid-state camera without attenuation correction.

    Article  PubMed  Google Scholar 

  35. •• Fiechter M, Ghadri JR, Kuest SM, et al. Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation vs invasive coronary angiography. Eur J Nucl Med Mol Imaging. 2011;38:2025–30. Validation of mulitpinhole CZT system vs invasive angiography.

    Article  PubMed  CAS  Google Scholar 

  36. Venero CV, Heller GV, Bateman TM, et al. A multicenter evaluation of a new post-processing method with depth-dependent collimator resolution applied to full-time and half-time acquisitions without and with simultaneously acquired attenuation correction. J Nucl Cardiol. 2009;16:714–25.

    Article  PubMed  Google Scholar 

  37. Gimelli A, Bottai M, Giorgetti A, et al. Comparison between ultrafast and standard single-photon emission ct in patients with coronary artery disease: a pilot study. Circ Cardiovasc Imaging. 2011;4:51–8.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

Guido Germano, Piotr J. Slomka, and Daniel S. Berman have received royalties from Cedars-Sinai Software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Germano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germano, G., Slomka, P.J. & Berman, D.S. New Hardware Solutions for Cardiac SPECT Imaging. Curr Cardiovasc Imaging Rep 6, 305–313 (2013). https://doi.org/10.1007/s12410-013-9206-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-013-9206-4

Keywords

Navigation