Skip to main content

Advertisement

Log in

Cardiac Micro-PET-CT

  • Technological Advances in Cardiac Multi-modality Imaging (TH Schindler, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Molecular imaging is a rapidly emerging field, with the use of multi-modality or hybrid technology scanners for in vivo investigations covering a broad spectrum of disease. Cardiac micro-PET-CT is one such promising multimodality. Standalone imaging technologies such as PET and CT have existed for several decades, however, they have only recently been utilized in concert, mainly for clinical cancer imaging. Cardiovascular events are responsible for nearly one-third of deaths in North America every year. Atherosclerosis, coronary artery disease (CAD), and heart failure are the most common types of heart disease. Cardiac imaging-related research into their prevention and treatment has contributed to a decrease in mortality. This review outlines the recent progress in the development and application of advanced cardiac micro-PET-CT technology. Current development of novel PET radiotracers focusing on diagnosis and characterization of different stages of atherosclerosis is discussed, as well as myocardial perfusion radiotracers mimicking previously established SPECT tracers and others. Small animal (mouse and rat) models of disease investigated with cardiac imaging are becoming more common, and will facilitate rapid translation to clinical studies with improvement in micro-PET-CT technology. Also, increasingly popular animal models for cardiovascular disease research such as mini-pigs and rabbits are used with interventional therapies, including catheterization due to larger artery sizes. The emergence of cardiac CT will be discussed with comparison between preclinical and clinical approaches, including consideration of radiation doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Sinusas AJ, Bengel F, Nahrendorf M, Epstein FH, Wu JC, Villanueva FS, et al. Multimodality cardiovascular molecular imaging, part I. Circ Cardiovasc Imaging. 2008;1:244–56. Comprehensive review of the instrumentation used in cardiac molecular imaging.

    Article  PubMed  Google Scholar 

  2. • Halpern EJ. Clinical applications of cardiac CT angiography. Insights Imaging. 2010;1:205–22. Recent overview of CTA indications.

    Article  PubMed  Google Scholar 

  3. • Desai MY. Cardiac CT beyond coronary angiography: current and emerging non-coronary cardiac applications. Heart. 2011;97:417–24. Recent overview of non-CTA indications.

    Article  PubMed  Google Scholar 

  4. Kramer CM, Sinusas AJ, Sosnovik DE, French BA, Bengel FM. Multimodality imaging of myocardial injury and remodeling. J Nucl Med. 2010;51:107S–21S.

    Article  PubMed  Google Scholar 

  5. Ali B, Hsiao E, Di Carli MF. Combined anatomic and perfusion imaging of the heart. Curr Cardiol Rep. 2010;12:90–7.

    Article  PubMed  Google Scholar 

  6. Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14:459–65.

    Article  PubMed  CAS  Google Scholar 

  7. Nekolla SG, Martinez-Moeller A, Saraste A. PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur J Nucl Med Mol Imaging. 2009;36:S121–30.

    Article  PubMed  Google Scholar 

  8. Laitinen I, Saraste A, Weidl E, Poethko T, Weber AW, Nekolla SG, et al. Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging. 2009;2:331–8.

    Article  PubMed  Google Scholar 

  9. Nahrendorf M, Keliher E, Panizzi P, Zhang H, Hembrador S, Figueiredo JL, et al. 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. Jacc: Cardiovasc Imaging. 2009;2:1213–22.

    Article  Google Scholar 

  10. Liu Y, Abendschein D, Woodard GE, Rossin R, McCommis K, Zheng J, et al. Molecular imaging of atherosclerotic plaque with (64)cu-labeled natriuretic peptide and PET. J Nucl Med. 2010;51:85–91.

    Article  PubMed  CAS  Google Scholar 

  11. Silvola JM, Saraste A, Forsback S, Laine VJ, Saukko P, Heinonen SE, et al. Detection of hypoxia by [18F]EF5 in atherosclerotic plaques in mice. Arterioscler Thromb Vasc Biol. 2011;31:1011–5.

    Article  PubMed  CAS  Google Scholar 

  12. Anderson CJ, Bulte JW, Chen K, Chen X, Khaw BA, Shokeen M, et al. Design of targeted cardiovascular molecular imaging probes. J Nucl Med. 2010;51:3S–17S.

    Article  PubMed  CAS  Google Scholar 

  13. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation. 2008;117:379–87.

    Article  PubMed  CAS  Google Scholar 

  14. Ujula T, Huttunen M, Luoto P, Perakyla H, Simpura I, Wilson I, et al. Matrix metalloproteinase 9 targeting peptides: Syntheses, 68Ga-labeling, and preliminary evaluation in a rat melanoma xenograft model. Bioconjug Chem. 2010;21:1612–21.

    Article  PubMed  CAS  Google Scholar 

  15. Dweck MR, Chow MW, Joshi NV, Williams MC, Jones C, Fletcher AM, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59:1539–48.

    Article  PubMed  CAS  Google Scholar 

  16. Solingapuram Sai KK, Kil KE, Tu Z, Chu W, Finck BN, Rothfuss JM, et al. Synthesis, radiolabeling and initial in vivo evaluation of [(11)C]KSM-01 for imaging PPAR-alpha receptors. Bioorg Med Chem Lett. 2012;22:6233–6.

    Article  PubMed  CAS  Google Scholar 

  17. Lee H, Chen DL, Rothfuss JM, Welch MJ, Gropler RJ, Mach RH. Synthesis and evaluation of 18F-labeled PPARgamma antagonists. Nucl Med Biol. 2012;39:77–87.

    Article  PubMed  CAS  Google Scholar 

  18. DeGrado TR, Bhattacharyya F, Pandey MK, Belanger AP, Wang S. Synthesis and preliminary evaluation of 18-(18)F-fluoro-4-thia-oleate as a PET probe of fatty acid oxidation. J Nucl Med. 2010;51:1310–7.

    Article  PubMed  CAS  Google Scholar 

  19. Thomas AJ, DaSilva JN, Lortie M, Renaud JM, Kenk M, Beanlands RS, et al. PET of (R)-11C-rolipram binding to phosphodiesterase-4 is reproducible and sensitive to increased norepinephrine in the rat heart. J Nucl Med. 2011;52:263–9.

    Article  PubMed  Google Scholar 

  20. Herrero P, Laforest R, Shoghi K, Zhou D, Ewald G, Pfeifer J, et al. Feasibility and dosimetry studies for 18F-NOS as a potential PET radiopharmaceutical for inducible nitric oxide synthase in humans. J Nucl Med. 2012;53:994–1001.

    Article  PubMed  CAS  Google Scholar 

  21. Higuchi T, Fukushima K, Xia J, Mathews WB, Lautamaki R, Bravo PE, et al. Radionuclide imaging of angiotensin II type 1 receptor upregulation after myocardial ischemia-reperfusion injury. J Nucl Med. 2010;51:1956–61.

    Article  PubMed  Google Scholar 

  22. Lehner S, Todica A, Brunner S, Uebleis C, Wang H, Wängler C, et al. Temporal changes in phosphatidylserine expression and glucose metabolism after myocardial infarction: an in vivo imaging study in mice. Mol Imaging. 2012;11:461–70.

    PubMed  CAS  Google Scholar 

  23. Lautamaki R, Terrovitis J, Bonios M, Yu J, Tsui BM, Abraham MR, et al. Perfusion defect size predicts engraftment but not early retention of intra-myocardially injected cardiosphere-derived cells after acute myocardial infarction. Basic Res Cardiol. 2011;106:1379–86.

    Article  PubMed  Google Scholar 

  24. Ziadi MC, Dekemp RA, Williams K, Guo A, Renaud JM, Chow BJ, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19:670–80.

    Article  PubMed  Google Scholar 

  25. • Yu M, Nekolla SG, Schwaiger M, Robinson SP. The next generation of cardiac positron emission tomography imaging agents: discovery of flurpiridaz F-18 for detection of coronary disease. Semin Nucl Med. 2011;41:305–13. Promising recent novel PET myocardial perfusion radiotracers.

    Article  PubMed  Google Scholar 

  26. Mou T, Zhao Z, Fang W, Peng C, Guo F, Liu B, et al. Synthesis and preliminary evaluation of 18F-labeled pyridaben analogues for myocardial perfusion imaging with PET. J Nucl Med. 2012;53:472–9.

    Article  PubMed  CAS  Google Scholar 

  27. Kim DY, Kim HS, Le UN, Jiang SN, Kim HJ, Lee KC, et al. Evaluation of a mitochondrial voltage sensor, (18F-fluoropentyl)triphenylphosphonium cation, in a rat myocardial infarction model. J Nucl Med. 2012;53:1779–85.

    Google Scholar 

  28. Gottumukkala V, Heinrich TK, Baker A, Dunning P, Fahey FH, Treves ST, et al. Biodistribution and stability studies of [18F]fluoroethylrhodamine B, a potential PET myocardial perfusion agent. Nucl Med Biol. 2010;37:365–70.

    Article  PubMed  CAS  Google Scholar 

  29. • Whitman SC. A practical approach to using mice in atherosclerosis research. Clin Biochem Rev. 2004;25:81–93. Overview of ischemia-reperfusion and infarction mice models.

    PubMed  Google Scholar 

  30. Zhang G, Li M, Li L, Xu Y, Li P, Yang C, et al. The immunologic injury composite with balloon injury leads to dyslipidemia: a robust rabbit model of human atherosclerosis and vulnerable plaque. J Biomed Biotechnol. 2012;2012:249129.

    PubMed  Google Scholar 

  31. Detombe SA, Ford NL, Xiang F, Lu X, Feng Q, Drangova M. Longitudinal follow-up of cardiac structure and functional changes in an infarct mouse model using retrospectively gated micro-computed tomography. Invest Radiol. 2008;43:520–9.

    Article  PubMed  Google Scholar 

  32. Gargiulo S, Greco A, Gramanzini M, Petretta MP, Ferro A, Larobina M, et al. PET/CT imaging in mouse models of myocardial ischemia. J Biomed Biotechnol. 2012;2012:541872.

    Article  PubMed  Google Scholar 

  33. Delso G, Martinez-Moller A, Bundschuh RA, Nekolla SG, Ziegler SI, Schwaiger M. Preliminary study of the detectability of coronary plaque with PET. Phys Med Biol. 2011;56:2145–60.

    Article  PubMed  CAS  Google Scholar 

  34. Aziz K, Berger K, Claycombe K, Huang R, Patel R, Abela GS. Noninvasive detection and localization of vulnerable plaque and arterial thrombosis with computed tomography angiography/positron emission tomography. Circulation. 2008;117:2061–70.

    Article  PubMed  Google Scholar 

  35. van der Laarse A, van der Wall EE. Monitoring plaque composition: is it worthwile? Int J Cardiovasc Imaging. 2009;25:259–61.

    Article  PubMed  Google Scholar 

  36. Croteau E, Gascon S, Bentourkia M, Langlois R, Rousseau JA, Lecomte R, et al. 11C]acetate rest-stress protocol to assess myocardial perfusion and oxygen consumption reserve in a model of congestive heart failure in rats. Nucl Med Biol. 2012;39:287–94.

    Article  PubMed  CAS  Google Scholar 

  37. Szanda I, Mackewn J, Patay G, Major P, Sunassee K, Mullen GE, et al. National electrical manufacturers association NU-4 performance evaluation of the PET component of the NanoPET/CT preclinical PET/CT scanner. J Nucl Med. 2011;52:1741–7.

    Article  PubMed  Google Scholar 

  38. Bioscan BioPET/CT. 2011. Website: www.cif.org.au/docs/misc/Imaging-Facility-PET-CT.pdf.

  39. Carestream Health/Brunker corp. albira PET/CT. 2012. Website: www.carestream.ca/pet-spect-ct-imaging.html.

  40. Bergeron M, Thibaudeau C, Cadorette J, Pepin C, Tetrault M, Davies M, et al. LabPET II, an APD-based PET detector module with counting CT imaging capability. IEEE Nucl Sci Symp Conf Rec. 2011.:3543–3547.

  41. Gamma M. Medica. triumph II PET/SPECT/CT. 2012. Website: www.wmis.org/2012/07/gamma-medica-releases-a-new-high-resolution-microct-for-the-triumph-ii-small-animal-petspectct.

  42. Mediso NanoScan PET/CT. 2012. Website: www.mediso.com/products.php?fid=2,11&pid=86

  43. Sedecal Super argus PET/CT. 2012. Website: www.sedecal.com/en/divisiones/division_prod.php?p=52&c=5

  44. Visser EP, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJ, et al. Spatial resolution and sensitivity of the inveon small-animal PET scanner. J Nucl Med. 2009;50:139–47.

    Article  PubMed  Google Scholar 

  45. Siemens S. INVEON PET/CT. 2012. Website: Healthcare.siemens.com/molecular-imaging/preclinical-imaging/inveon-configurations/inveon-docked-pet-ct.

  46. Sanchez F, Moliner L, Correcher C, Gonzalez A, Orero A, Carles M, et al. Small animal PET scanner based on monolithic LYSO crystals: performance evaluation. Med Phys. 2012;39:643–53.

    Article  PubMed  CAS  Google Scholar 

  47. Yang Y, James SS, Wu Y, Du H, Qi J, Farrell R, et al. Tapered LSO arrays for small animal PET. Phys Med Biol. 2011;56:139–53.

    Article  PubMed  Google Scholar 

  48. Yoshida E, Kinouchi S, Tashima H, Nishikido F, Inadama N, Murayama H, et al. System design of a small OpenPET prototype with 4-layer DOI detectors. Radiol Phys Technol. 2012;5:92–7.

    Article  PubMed  Google Scholar 

  49. Bircher C, Shao Y. Investigation of crystal surface finish and geometry on single LYSO scintillator detector performance for depth-of-interaction measurement with silicon photomultipliers. Nucl Instrum Methods Phys Res A. 2012;693:236–43.

    Article  PubMed  CAS  Google Scholar 

  50. Gu Y, Matteson JL, Skelton RT, Deal AC, Stephan EA, Duttweiler F, et al. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET. Phys Med Biol. 2011;56:1563–84.

    Article  PubMed  CAS  Google Scholar 

  51. Levin CS. Promising new photon detection concepts for high-resolution clinical and preclinical PET. J Nucl Med. 2012;53:167–70.

    Article  PubMed  CAS  Google Scholar 

  52. Kolb A, Lorenz E, Judenhofer MS, Renker D, Lankes K, Pichler BJ. Evaluation of geiger-mode APDs for PET block detector designs. Phys Med Biol. 2010;55:1815–32.

    Article  PubMed  Google Scholar 

  53. Buscher K, Judenhofer MS, Kuhlmann MT, Hermann S, Wehrl HF, Schafers KP, et al. Isochronous assessment of cardiac metabolism and function in mice using hybrid PET/MRI. J Nucl Med. 2010;51:1277–84.

    Article  PubMed  Google Scholar 

  54. Tsui BM, Kraitchman DL. Recent advances in small-animal cardiovascular imaging. J Nucl Med. 2009;50:667–70.

    Article  PubMed  Google Scholar 

  55. Liu B, Wang G, Ritman EL, Cao G, Lu J, Zhou O, et al. Image reconstruction from limited angle projections collected by multisource interior x-ray imaging systems. Phys Med Biol. 2011;56:6337–57.

    Article  PubMed  Google Scholar 

  56. Thibaudeau C, Bérard P, Tétrault MA, Leroux JD, Bergeron M, Fontaine R, et al. Toward truly combined PET/CT imaging using PET detectors and photon counting CT with iterative reconstruction implementing physical detector response. Med Phys. 2012;39:5697–707.

    Article  PubMed  Google Scholar 

  57. Badea CT, Fubara B, Hedlund LW, Johnson GA. 4-D micro-CT of the mouse heart. Mol Imaging. 2005;4:110–6.

    PubMed  Google Scholar 

  58. Nahrendorf M, Badea C, Hedlund LW, Figueiredo JL, Sosnovik DE, Johnson GA, et al. High-resolution imaging of murine myocardial infarction with delayed-enhancement cine micro-CT. Am J Physiol Heart Circ Physiol. 2007;292:H3172–8.

    Article  PubMed  CAS  Google Scholar 

  59. Tran DN, Straka M, Roos JE, Napel S, Fleischmann D. Dual-energy CT discrimination of iodine and calcium: Experimental results and implications for lower extremity CT angiography. Acad Radiol. 2009;16:160–71.

    Article  PubMed  Google Scholar 

  60. Schultke E, Fiedler S, Nemoz C, Ogieglo L, Kelly ME, Crawford P, et al. Synchrotron-based intra-venous K-edge digital subtraction angiography in a pig model: a feasibility study. Eur J Radiol. 2010;73:677–81.

    Article  PubMed  Google Scholar 

  61. Lundstrom U, Larsson DH, Burvall A, Takman PA, Scott L, Brismar H, et al. X-ray phase contrast for CO2 microangiography. Phys Med Biol. 2012;57:2603–17.

    Article  PubMed  CAS  Google Scholar 

  62. Kerl HU, Isaza CT, Boll H, Schambach SJ, Nolte IS, Groden C, et al. Evaluation of a continuous-rotation, high-speed scanning protocol for micro-computed tomography. J Comput Assist Tomogr. 2011;35:517–23.

    Article  PubMed  Google Scholar 

  63. Ropinski T, Hermann S, Reich R, Schafers M, Hinrichs K. Multimodal vessel visualization of mouse aorta PET/CT scans. IEEE Trans Vis Comput Graph. 2009;15:1515–22.

    Article  PubMed  Google Scholar 

  64. Pascau J, Vaquero JJ, Chamorro-Servent J, Rodriguez-Ruano A, Desco M. A method for small-animal PET/CT alignment calibration. Phys Med Biol. 2012;57:N199–207.

    Article  PubMed  CAS  Google Scholar 

  65. Feng B, Yan S, Chen M, Austin D, Deng J, Mintzer R. Automated least-squares calibration of the coregistration parameters for a micro PET-CT system. IEEE Trans Nucl Sci. 2011;58:2303–7.

    Article  Google Scholar 

  66. Chow PL, Stout DB, Komisopoulou E, Chatziioannou AF. A method of image registration for small animal, multi-modality imaging. Phys Med Biol. 2006;51:379–90.

    Article  PubMed  Google Scholar 

  67. Del Guerra A, Belcari N. State-of-the-art of PET, SPECT and CT for small animal imaging. Nucl Instrum Meth Phys Res A. 2007;583:119–24.

    Article  Google Scholar 

  68. Chow PL, Rannou FR, Chatziioannou AF. Attenuation correction for small animal PET tomographs. Phys Med Biol. 2005;50:1837–50.

    Article  PubMed  Google Scholar 

  69. Konik A, Koesters T, Madsen MT, Sunderland JJ. Evaluation of attenuation and scatter correction requirements as a function of object size in small animal PET imaging. IEEE Trans on Nucl Sci. 2011;5:2308–14.

    Article  Google Scholar 

  70. Yao R, Lecomte R, Crawford ES. Small-animal PET: what is it, and why do we need it? J Nucl Med Technol. 2012;40:157–65.

    Article  PubMed  Google Scholar 

  71. • de Kemp RA, Epstein FH, Catana C, Tsui BM, Ritman EL. Small-animal molecular imaging methods. J Nucl Med. 2010;51:18S–32S. Comprehensive review of instrumentation in small animal molecular imaging.

    Article  PubMed  Google Scholar 

  72. Cheng JC, Shoghi K, Laforest R. Quantitative accuracy of MAP reconstruction for dynamic PET imaging in small animals. Med Phys. 2012;39:1029–41.

    Article  PubMed  Google Scholar 

  73. Rousset O, Rahmim A, Alavi A, Zaidi H. Partial volume correction strategies in PET. PET Clin. 2007;2:235–49.

    Article  Google Scholar 

  74. Dumouchel T, Thorn S, Kordos M, DaSilva J, Beanlands RS, deKemp RA. A three-dimensional model-based partial volume correction strategy for gated cardiac mouse PET imaging. Phys Med Biol. 2012;57:4309–34.

    Article  PubMed  Google Scholar 

  75. Croteau E, Lavallee E, Labbe SM, Hubert L, Pifferi F, Rousseau JA, et al. Image-derived input function in dynamic human PET/CT: Methodology and validation with 11C-acetate and 18F-fluorothioheptadecanoic acid in muscle and 18F-fluorodeoxyglucose in brain. Eur J Nucl Med Mol Imaging. 2010;37:1539–50.

    Article  PubMed  CAS  Google Scholar 

  76. Johnson NP, Sdringola S, Gould KL. Partial volume correction incorporating rb-82 positron range for quantitative myocardial perfusion PET based on systolic-diastolic activity ratios and phantom measurements. J Nucl Cardiol. 2011;18:247–58.

    Article  PubMed  Google Scholar 

  77. Lehnert W, Gregoire MC, Reilhac A, Meikle SR. Characterisation of partial volume effect and region-based correction in small animal positron emission tomography (PET) of the rat brain. NeuroImage. 2012;60:2144–57.

    Article  PubMed  Google Scholar 

  78. Yang Y, Rendig S, Siegel S, Newport DF, Cherry SR. Cardiac PET imaging in mice with simultaneous cardiac and respiratory gating. Phys Med Biol. 2005;50:2979–89.

    Article  PubMed  Google Scholar 

  79. Su Y. Inter-frame motion correction for small animal PET imaging. IEEE Int Conf Biomed Eng Inform. 2011;1:338–42.

    Google Scholar 

  80. Kramer CM, Sinusas AJ, Sosnovik DE, French BA, Bengel FM. Multimodality imaging of myocardial injury and remodeling. J Nucl Med. 2010;51 Suppl 1:107S–21S.

    Article  PubMed  Google Scholar 

  81. •• Nahrendorf M, Sosnovik DE, French BA, Swirski FK, Bengel F, Sadeghi MM, et al. Multimodality cardiovascular molecular imaging, part II. Circ Cardiovasc Imaging. 2009;2:56–70. Comprehensive review of multimodality imaging of cardiac molecular disease.

    Article  PubMed  Google Scholar 

  82. Rydberg J, Buckwalter KA, Caldemeyer KS, Phillips MD, Conces Jr DJ, Aisen AM, et al. Multisection CT: scanning techniques and clinical applications. Radiographics. 2000;20:1787–806.

    PubMed  CAS  Google Scholar 

  83. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010;256:32–61.

    Article  PubMed  Google Scholar 

  84. Van de Veire NR, Schuijf JD, De Sutter J, Devos D, Bleeker GB, de Roos A, et al. Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol. 2006;48:1832–8.

    Article  PubMed  Google Scholar 

  85. Malyar NM, Gossl M, Beighley PE, Ritman EL. Relationship between arterial diameter and perfused tissue volume in myocardial microcirculation: a micro-CT-based analysis. Am J Physiol Heart Circ Physiol. 2004;286:H2386–92.

    Article  PubMed  CAS  Google Scholar 

  86. Sangaralingham SJ, Ritman EL, McKie PM, Ichiki T, Lerman A, Scott CG, et al. Cardiac micro-computed tomography imaging of the aging coronary vasculature. Circ Cardiovasc Imaging. 2012;5:518–24.

    Article  PubMed  Google Scholar 

  87. Detombe SA, Dunmore-Buyze J, Drangova M. Evaluation of eXIA 160 cardiac-related enhancement in C57BL/6 and BALB/c mice using micro-CT. Contrast Media Mol Imaging. 2012;7:240–6.

    Article  PubMed  CAS  Google Scholar 

  88. Roosens B, Bala G, Droogmans S, Hostens J, Somja J, Delvenne E, et al. Occurrence of cardiovascular calcifications in normal, aging rats. Exp Gerontol. 2012;47:614–9.

    Article  PubMed  CAS  Google Scholar 

  89. Willekens I, Buls N, Lahoutte T, Baeyens L, Vanhove C, Caveliers V, et al. Evaluation of the radiation dose in micro-CT with optimization of the scan protocol. Contrast Media Mol Imaging. 2010;5:201–7.

    Article  PubMed  CAS  Google Scholar 

  90. •• Schambach SJ, Bag S, Schilling L, Groden C, Brockmann MA. Application of micro-CT in small animal imaging. Methods. 2010;50:2–13. Recent overview of micro CT.

    Article  PubMed  CAS  Google Scholar 

  91. Liang L, Mendonca MS, Deng L, Nguyen SC, Shao C, Tischfield JA. Reduced apoptosis and increased deletion mutations at aprt locus in vivo in mice exposed to repeated ionizing radiation. Cancer Res. 2007;67:1910–7.

    Article  PubMed  CAS  Google Scholar 

  92. •• Kersemans V, Thompson J, Cornelissen B, Woodcock M, Allen PD, Buls N, et al. Micro-CT for anatomic referencing in PET and SPECT: radiation dose, biologic damage, and image quality. J Nucl Med. 2011;52:1827–33. Recent reference for the dosimetry of micro CT.

    Article  PubMed  Google Scholar 

  93. •• Funk T, Sun M, Hasegawa BH. Radiation dose estimate in small animal SPECT and PET. Med Phys. 2004;31:2680–6. Reference for the dosimetry for radiotracers in small animal imaging.

    Article  PubMed  CAS  Google Scholar 

  94. Hupfer M, Kolditz D, Nowak T, Eisa F, Brauweiler R, Kalender WA. Dosimetry concepts for scanner quality assurance and tissue dose assessment in micro-CT. Med Phys. 2012;39:658–70.

    Article  PubMed  CAS  Google Scholar 

  95. Rodt T, Luepke M, Boehm C, Hueper K, Halter R, Glage S, et al. Combined micro-PET/Micro-CT imaging of lung tumours in SPC-raf and SPC-myc transgenic mice. PLoS One. 2012;7:e44427.

    Article  PubMed  CAS  Google Scholar 

  96. Brouwers JE, van Rietbergen B, Huiskes R. No effects of in vivo micro-CT radiation on structural parameters and bone marrow cells in proximal tibia of wistar rats detected after eight weekly scans. J Orthop Res. 2007;25:1325–32.

    Article  PubMed  Google Scholar 

  97. Vandeghinste B, Trachet B, Renard M, Casteleyn C, Staelens S, Loeys B, et al. Replacing vascular corrosion casting by in vivo micro-CT imaging for building 3D cardiovascular models in mice. Mol Imaging Biol. 2011;13:78–86.

    Article  PubMed  Google Scholar 

  98. Schambach SJ, Bag S, Steil V, Isaza C, Schilling L, Groden C, et al. Ultrafast high-resolution in vivo volume-CTA of mice cerebral vessels. Stroke. 2009;40:1444–50.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. deKemp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croteau, E., Renaud, J.M. & deKemp, R.A. Cardiac Micro-PET-CT. Curr Cardiovasc Imaging Rep 6, 179–190 (2013). https://doi.org/10.1007/s12410-012-9188-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-012-9188-7

Keywords

Navigation