Skip to main content

Advertisement

Log in

No evidence for association between a functional promoter variant of the Norepinephrine Transporter gene SLC6A2 and ADHD in a family-based sample

  • Original Article
  • Published:
ADHD Attention Deficit and Hyperactivity Disorders

Abstract

Noradrenergic neurotransmission influences executive functions, attentional performance, and general alertness, involving neuronal networks affected in attention deficit/hyperactivity disorder (ADHD). The norepinephrine transporter facilitates the reuptake of norepinephrine and dopamine in the prefrontal cortex and represents the main target of atomoxetine, an effective drug in the treatment of ADHD. Due to its influence on catecholaminergic signaling, variants of the coding gene (SLC6A2) have been widely investigated in ADHD. Several previous studies report an association between single nucleotide polymorphisms located in SLC6A2 and ADHD; however, the findings are inconsistent. The variant A-3081T (rs28386840) has been shown to have major influence on the expression levels of SLC6A2 due to sequence alteration at a repressor binding site, with the T-allele being associated with ADHD. We tested this potential association of A-3081T in a German family-based ADHD sample of 235 children from 162 families, which has a power >99% based on the previously reported odds ratios. There was no evidence for an overtransmission of the risk allele T (transmission rate: 48.5%, P = 0.55). We conclude that A-3081T is not a major risk variant in our ADHD sample, though SLC6A2 remains an interesting candidate gene in ADHD, especially for the inattentive subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albayrak O, Friedel S, Schimmelmann BG, Hinney A, Hebebrand J (2008) Genetic aspects in attention-deficit/hyperactivity disorder. J Neural Transm 115:305–315

    Article  PubMed  CAS  Google Scholar 

  • American Psychiatric Association (2009) Diagnostic and statistical manual of mental disorders, 4th ed., text rev., 13. print. American Psychiatric Association, Arlington

  • Arnsten AF (2006) Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry 67(8):7–12

    Article  PubMed  CAS  Google Scholar 

  • Bobb AJ, Addington Am, Sidransky E, Gornick MC, Lerch JP, Greenstein DK, Clasen LS, Sharp WS, Inoff-Germain G, Wavrant-De VF, Arcos-Burgos M, Straub RE, Hardy JA, Castellanos FX, Rapoport JL (2005) Support for association between ADHD and two candidate genes: NET1 and DRD1. Am J Med Genet B Neuropsychiatr Genet 134B:67–72

    Article  PubMed  Google Scholar 

  • Brennan AR, Arnsten AFT (2008) Neuronal mechanisms underlying attention deficit hyperactivity disorder: the influence of arousal on prefrontal cortical function. Ann NY Acad Sci 1129:236–245

    Article  PubMed  Google Scholar 

  • Brookes K, Xu X, Chen W, Zhou K, Neale B, Lowe N, Anney R, Aneey R, Franke B, Gill M, Ebstein R, Buitelaar J, Sham P, Campbell D, Knight J, Andreou P, Altink M, Arnold R, Boer F, Buschgens C, Butler L, Christiansen H, Feldman L, Fleischman K, Fliers E, Howe-Forbes R, Goldfarb A, Heise A, Gabriëls I, Korn-Lubetzki I, Johansson L, Marco R, Medad S, Minderaa R, Mulas F, Müller U, Mulligan A, Rabin K, Rommelse N, Sethna V, Sorohan J, Uebel H, Psychogiou L, Weeks A, Barrett R, Craig I, Banaschewski T, Sonuga-Barke E, Eisenberg J, Kuntsi J, Manor I, McGuffin P, Miranda A, Oades RD, Plomin R, Roeyers H, Rothenberger A, Sergeant J, Steinhausen H, Taylor E, Thompson M, Faraone SV, Asherson P (2006) The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 11:934–953

    Article  PubMed  CAS  Google Scholar 

  • Bruno KJ, Freet CS, Twining RC, Egami K, Grigson PS, Hess EJ (2007) Abnormal latent inhibition and impulsivity in coloboma mice, a model of ADHD. Neurobiol Dis 25:206–216

    Article  PubMed  CAS  Google Scholar 

  • Chen WM, Deng HW (2001) A general and accurate approach for computing the statistical power of the transmission disequilibrium test for complex disease genes. Genet Epidemiol 21:53–67

    Article  PubMed  CAS  Google Scholar 

  • Cho S, Kim J, Kim B, Hwang J, Park M, Kim SA, Cho D, Yoo H, Chung U, Son J, Park T (2008) No evidence of an association between norepinephrine transporter gene polymorphisms and attention deficit hyperactivity disorder: a family-based and case-control association study in a Korean sample. Neuropsychobiology 57:131–138

    Article  PubMed  CAS  Google Scholar 

  • Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Joung Y, Kim CH, Moon J, Jang WS, Yang J, Shin D, Lee S, Kim KS (2010) Association studies of -3081(A/T) polymorphism of norepinephrine transporter gene with attention deficit/hyperactivity disorder in Korean population. Am J Med Genet B Neuropsychiatr Genet 153B:691–694

    PubMed  CAS  Google Scholar 

  • Kim C, Hahn MK, Joung Y, Anderson SL, Steele AH, Mazei-Robinson MS, Gizer I, Teicher MH, Cohen BM, Robertson D, Waldman ID, Blakely RD, Kim K (2006) A polymorphism in the norepinephrine transporter gene alters promoter activity and is associated with attention-deficit hyperactivity disorder. Proc Natl Acad Sci USA 103:19164–19169

    Article  PubMed  CAS  Google Scholar 

  • Kim JW, Biederman J, McGrath CL, Doyle AE, Mick E, Fagerness J, Purcell S, Smoller JW, Sklar P, Faraone SV (2008) Further evidence of association between two NET single-nucleotide polymorphisms with ADHD. Mol Psychiatry 13:624–630

    Article  PubMed  CAS  Google Scholar 

  • Kim BN, Kim JW, Hong SB, Cho SC, Shin MS, Yoo HJ (2010) Possible association of norepinephrine transporter-3081(A/T) polymorphism with methylphenidate response in attention deficit hyperactivity disorder. Behav Brain Funct 6:57

    Article  PubMed  CAS  Google Scholar 

  • Kooij JS, Boonstra Am, Vermeulen SH, Heister AG, Burger H, Buitelaar JK, Franke B (2008) Response to methylphenidate in adults with ADHD is associated with a polymorphism in SLC6A3 (DAT1). Am J Med Genet B Neuropsychiatr Genet 147B:201–208

    Article  PubMed  Google Scholar 

  • Kostrzewa RM, Kostrzewa JP, Kostrzewa RA, Nowak P, Brus R (2008) Pharmacological models of ADHD. J Neural Transm 115:287–298

    Article  PubMed  CAS  Google Scholar 

  • Lasky-Su J, Neale BM, Franke B, Anney RJ, Zhou K, Maller JB, Vasquez AA, Chen W, Asherson P, Buitelaar J, Banaschewski T, Ebstein R, Gill M, Miranda A, Mulas F, Oades RD, Roeyers H, Rothenberger A, Sergeant J, Sonuga-Barke E, Steinhausen HC, Taylor E, Daly M, Laird N, Lange C, Faraone SV (2008) Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B Neuropsychiatr Genet 147B:1345–1354

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Kim SW, Lee MG, Yook KH, Greenhill LL, Frandin KN, Hong HJ (2011) Lack of association between response of OROS-methylphenidate and norepinephrine transporter (SLC6A2) polymorphism in Korean ADHD. Psychiatry Res 186:338–344

    Article  PubMed  CAS  Google Scholar 

  • Martin ER, Monks SA, Warren LL, Kaplan NL (2000) A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 67:146–154

    Article  PubMed  CAS  Google Scholar 

  • O’Connell JR, Weeks DE (1998) PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 63:259–266

    Article  PubMed  Google Scholar 

  • Polanczyk G, Rohde LA (2007) Epidemiology of attention-deficit/hyperactivity disorder across the lifespan. Curr Opin Psychiatry 20:386–392

    Article  PubMed  Google Scholar 

  • Ramoz N, Boni C, Downing Am, Close SL, Peters SL, Prokop Am, Allen AJ, Hamon M, Purper-Ouakil D, Gorwood P (2009) A haplotype of the norepinephrine transporter (Net) gene Slc6a2 is associated with clinical response to atomoxetine in attention-deficit hyperactivity disorder (ADHD). Neuropsychopharmacology 34:2135–2142

    Article  PubMed  CAS  Google Scholar 

  • Retz W, Rösler M, Kissling C, Wiemann S, Hünnerkopf R, Coogan A, Thome J, Freitag C (2008) Norepinephrine transporter and catecholamine-O-methyltransferase gene variants and attention-deficit/hyperactivity disorder symptoms in adults. J Neural Transm 115:323–329

    Article  PubMed  CAS  Google Scholar 

  • Russell VA (2007) Reprint of “Neurobiology of animal models of attention-deficit hyperactivity disorder”. J Neurosci Methods 166:1–14

    Google Scholar 

  • Schimmelmann BG, Friedel S, Christiansen H, Dempfle A, Hinney A, Hebebrand J (2006) Genetische Befunde bei der Aufmerksamkeitsdefizit- und Hyperaktivitatsstorung (ADHS). Z Kinder Jugendpsychiatr Psychother 34:425–433

    Article  PubMed  Google Scholar 

  • Seneca N, Gulyás B, Varrone A, Schou M, Airaksinen A, Tauscher J, Vandenhende F, Kielbasa W, Farde L, Innis RB, Halldin C (2006) Atomoxetine occupies the norepinephrine transporter in a dose-dependent fashion: a PET study in nonhuman primate brain using (S, S)-[18F]FMeNER-D2. Psychopharmacology (Berl) 188:119–127

    Article  CAS  Google Scholar 

  • Shelton TL, Barkley RA, Crosswait C, Moorehouse M, Fletcher K, Barrett S, Jenkins L, Metevia L (2000) Multimethod psychoeducational intervention for preschool children with disruptive behavior: two-year post-treatment follow-up. J Abnorm Child Psychol 28:253–266

    Article  PubMed  CAS  Google Scholar 

  • Song J, Song DH, Jhung K, Cheon KA (2011) Norepinephrine transporter gene (SLC6A2) is involved with methylphenidate response in Korean children with attention deficit hyperactivity disorder. Int Clin Psychopharmacol 26:107–113

    Article  PubMed  Google Scholar 

  • Sontag TA, Tucha O, Walitza S, Lange KW (2010) Animal models of attention deficit/hyperactivity disorder (ADHD): a critical review. Atten Defic Hyperact Disord 2:1–20

    Article  PubMed  Google Scholar 

  • Tharoor H, Lobos EA, Todd RD, Reiersen AM (2008) Association of dopamine, serotonin, and nicotinic gene polymorphisms with methylphenidate response in ADHD. Am J Med Genet B Neuropsychiatr Genet 147B:527–530

    Article  PubMed  Google Scholar 

  • Xu X, Knight J, Brookes K, Mill J, Sham P, Craig I, Taylor E, Asherson P (2005) DNA pooling analysis of 21 norepinephrine transporter gene SNPs with attention deficit hyperactivity disorder: no evidence for association. Am J Med Genet B Neuropsychiatr Genet 134B:115–118

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all participants for their support. We would like to thank Nicole Döring for excellent technical assistance. The work was supported by the Deutsche Forschungsgemeinschaft (KFO 125/1-1 & 125/1-2; SCHA 542/10-3; LE 629/11-1) and the Bundesministerium für Bildung und Forschung (BMBF 01GV0605).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Renner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renner, T.J., Nguyen, T.T., Romanos, M. et al. No evidence for association between a functional promoter variant of the Norepinephrine Transporter gene SLC6A2 and ADHD in a family-based sample. ADHD Atten Def Hyp Disord 3, 285–289 (2011). https://doi.org/10.1007/s12402-011-0060-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12402-011-0060-4

Keywords

Navigation