Skip to main content
Log in

Hyperspectral Imaging Coupled with Multivariate Analyses for Efficient Prediction of Chemical, Biological and Physical Properties of Seafood Products

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Quality evaluation of seafood is essential for consumer satisfaction. Hyperspectral imaging (HSI) has been introduced in the seafood industry for assessing seafood quality, safety, authenticity, and adulteration whilst maintaining sample integrity. However, there is limited information on multivariate analyses applied using the HSI for seafood quality. This review presents a comprehensive summary of the existing published research to describe the application of HSI coupled with multivariate analyses of seafood products. Applications of multivariate analyses for map distribution, spectral selection, and data extraction of the HSI system in the seafood industry are highlighted. Trends and challenges using HSI in the seafood industry are also discussed in this review. As a rapid and non-destructive tool, HSI technology shows great potential for evaluating the quality of seafood products by on-line or at-line detection. The ability to provide spatial and spectral information coupled with multivariate analyses makes the HSI system broadly in the seafood industry. Deep learning performed by artificial intelligence is a great solution recently for data classification of hyperspectral imaging with a shift-invariant feature of seafood products. HSI systems fitted with multivariate analyses software could be eased in the large-scale seafood industry to determine the chemical, biological, and physical quality traits of seafood products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data information generated during and/or analysed during the current study are extracted from the references provided also available from the corresponding author on reasonable request.

References

  1. Tocher D, Betancor M, Sprague M et al (2019) Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: Bridging the gap between supply and demand. Nutrients 11:89. https://doi.org/10.3390/nu11010089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hashimoto K, Kobayashi S, Yamashita M (2017) Comparison of connective tissue structure and muscle toughness of spotted mackerel Scomber australasicus and Pacific mackerel S. japonicus during chilled and frozen storage. Fish Sci 83:133–139. https://doi.org/10.1007/s12562-016-1042-4

    Article  CAS  Google Scholar 

  3. Valencia-Perez AZ, Soto-Valdez H, Ezquerra-Brauer JM et al (2015) Quality changes during frozen storage of blue shrimp (Litopenaeus stylirostris) with antioxidant, alphatocopherol, under different conditions. Food Sci Technol 35:368–374. https://doi.org/10.1590/1678-457X.6666

    Article  Google Scholar 

  4. Hong H, Regenstein JM, Luo Y (2017) The importance of ATP-related compounds for the freshness and flavor of post-mortem fish and shellfish muscle: A review. Crit Rev Food Sci Nutr 57:1787–1798. https://doi.org/10.1080/10408398.2014.1001489

    Article  CAS  PubMed  Google Scholar 

  5. Galvão JA, Margeirsson S, Garate C et al (2010) Traceability system in cod fishing. Food Control 21:1360–1366. https://doi.org/10.1016/j.foodcont.2010.03.010

    Article  Google Scholar 

  6. Prabhakar PK, Vatsa S, Srivastav PP, Pathak SS (2020) A comprehensive review on freshness of fish and assessment: Analytical methods and recent innovations. Food Res Int 133:109157. https://doi.org/10.1016/j.foodres.2020.109157

    Article  CAS  PubMed  Google Scholar 

  7. Zhou X, Yu X, Xie F et al (2021) pH-responsive double-layer indicator films based on konjac glucomannan/camellia oil and carrageenan/anthocyanin/curcumin for monitoring meat freshness. Food Hydrocoll 118:106695. https://doi.org/10.1016/j.foodhyd.2021.106695

    Article  CAS  Google Scholar 

  8. Cheng J-H, Dai Q, Sun D-W et al (2013) Applications of non-destructive spectroscopic techniques for fish quality and safety evaluation and inspection. Trends Food Sci Technol 34:18–31. https://doi.org/10.1016/j.tifs.2013.08.005

    Article  CAS  Google Scholar 

  9. Stefanowicz P (2013) Sensory evaluation of food principles and practices. J Wine Res 24:80–80. https://doi.org/10.1080/09571264.2013.764662

    Article  Google Scholar 

  10. Hassoun A, Karoui R (2017) Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: Advantages and limitations. Crit Rev Food Sci Nutr 57:1976–1998. https://doi.org/10.1080/10408398.2015.1047926

    Article  CAS  PubMed  Google Scholar 

  11. Alasalvar C, Taylor KDA, Öksüz A et al (2001) Freshness assessment of cultured sea bream (Sparus aurata) by chemical, physical and sensory methods. Food Chem 72:33–40. https://doi.org/10.1016/S0308-8146(00)00196-5

    Article  CAS  Google Scholar 

  12. Plakidi ES, Maragou NC, Dasenaki ME et al (2020) Liquid chromatographic determination of biogenic amines in fish based on pyrene sulfonyl chloride pre-column derivatization. Foods 9:609. https://doi.org/10.3390/foods9050609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Filipec SV, Valinger D, Mikac L et al (2021) Influence of sample matrix on determination of histamine in fish by surface enhanced raman spectroscopy coupled with chemometric modelling. Foods 10:1767. https://doi.org/10.3390/foods10081767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moon EJ, Kim Y, Xu Y et al (2020) Evaluation of salmon, tuna, and beef freshness using a portable spectrometer. Sensors 4299:1–12. https://doi.org/10.3390/s20154299

  15. Cheng J-H, Sun D-W, Zeng XA, Pu H-B (2014) Non-destructive and rapid determination of TVB-N content for freshness evaluation of grass carp (Ctenopharyngodon idella) by hyperspectral imaging. Innov Food Sci Emerg Technol 21:179–187. https://doi.org/10.1016/j.ifset.2013.10.013

    Article  CAS  Google Scholar 

  16. Rahman A, Kondo N, Ogawa Y et al (2015) Prediction of K value for fish flesh based on ultraviolet–visible spectroscopy of fish eye fluid using partial least squares regression. Comput Electron Agric 117:149–153. https://doi.org/10.1016/j.compag.2015.07.018

    Article  Google Scholar 

  17. Goddard JM, McClements DJ, Decker EA (2012) Innovative technologies in the control of lipid oxidation. Lipid Technol 24:275–277. https://doi.org/10.1002/lite.201200242

    Article  CAS  Google Scholar 

  18. Shi Y, Wang X, Mohammad B et al (2021) A review on meat quality evaluation methods based on non-destructive computer vision and artificial intelligence technologies. Food Sci Anim Resour 41:563–588. https://doi.org/10.5851/kosfa.2021.e25

    Article  PubMed  PubMed Central  Google Scholar 

  19. Karoui R, Blecker C (2011) Fluorescence spectroscopy measurement for quality assessment of food systems: A review. Food Bioprocess Technol 4:364–386. https://doi.org/10.1007/s11947-010-0370-0

    Article  Google Scholar 

  20. Govari M, Tryfinopoulou P, Parlapani FF et al (2021) Quest of intelligent research tools for rapid evaluation of fish quality: FTIR spectroscopy and multispectral imaging versus microbiological analysis. Foods 10:264. https://doi.org/10.3390/foods10020264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu T, Ge Y, Li Y et al (2018) Quality enhancement of large yellow croaker treated with edible coatings based on chitosan and lysozyme. Int J Biol Macromol 120:1072–1079. https://doi.org/10.1016/j.ijbiomac.2018.08.188

    Article  CAS  PubMed  Google Scholar 

  22. Cheng J-H, Sun D-W (2014) Hyperspectral imaging as an effective tool for quality analysis and control of fish and other seafoods: Current research and potential applications. Trends Food Sci Technol 37:78–91. https://doi.org/10.1016/j.tifs.2014.03.006

    Article  CAS  Google Scholar 

  23. Kamruzzaman M, Makino Y, Oshita S (2016) Online monitoring of red meat color using hyperspectral imaging. Meat Sci 116:110–117. https://doi.org/10.1016/j.meatsci.2016.02.004

    Article  PubMed  Google Scholar 

  24. Costa C, Antonucci F, Pallottino F et al (2011) Shape analysis of agricultural products: A review of recent research advances and potential application to computer vision. Food Bioprocess Technol 4:673–692. https://doi.org/10.1007/s11947-011-0556-0

    Article  Google Scholar 

  25. Zhuang S, Liu X, Li Y et al (2021) Biochemical changes and amino acid deamination & decarboxylation activities of spoilage microbiota in chill-stored grass carp (Ctenopharyngodon idella) fillets. Food Chem 336:127683. https://doi.org/10.1016/j.foodchem.2020.127683

    Article  CAS  PubMed  Google Scholar 

  26. Aubourg SP, Losada V, Prado M et al (2007) Improvement of the commercial quality of chilled Norway lobster (Nephrops norvegicus) stored in slurry ice: Effects of a preliminary treatment with an antimelanosic agent on enzymatic browning. Food Chem 103:741–748. https://doi.org/10.1016/j.foodchem.2006.09.022

    Article  CAS  Google Scholar 

  27. Ghidini S, Chiesa LM, Panseri S et al (2021) Histamine control in raw and processed tuna: A rapid tool based on NIR spectroscopy. Foods 10:885. https://doi.org/10.3390/foods10040885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng J-H, Sun D-W, Pu H-B et al (2015) Integration of classifiers analysis and hyperspectral imaging for rapid discrimination of fresh from cold-stored and frozen-thawed fish fillets. J Food Eng 161:33–39. https://doi.org/10.1016/j.jfoodeng.2015.03.011

    Article  CAS  Google Scholar 

  29. Casas C, Martinez O, Guillen MD et al (2006) Textural properties of raw Atlantic salmon (Salmo salar) at three points along the fillet, determined by different methods. Food Control 17:511–515. https://doi.org/10.1016/j.foodcont.2005.02.013

    Article  Google Scholar 

  30. Huang Q, Chen Q, Li H et al (2015) Non-destructively sensing pork’s freshness indicator using near infrared multispectral imaging technique. J Food Eng 154:69–75. https://doi.org/10.1016/j.jfoodeng.2015.01.006

    Article  Google Scholar 

  31. Reis MM, Martínez E, Saitua E et al (2017) Non-invasive differentiation between fresh and frozen/thawed tuna fillets using near infrared spectroscopy (VIS-NIRS). LWT - Food Sci Technol 78:129–137. https://doi.org/10.1016/j.lwt.2016.12.014

    Article  CAS  Google Scholar 

  32. Liu D, Eng X-A, Sun D-W (2013) NIR spectroscopy and imaging techniques for evaluation of fish quality- A review. Appl Spectrosc Rev 48:609–628. https://doi.org/10.1080/05704928.2013.775579

  33. Yakes BJ, Ellsworth Z, Karunathilaka SR, Crump E (2021) Evaluation of portable sensor and spectroscopic devices for seafood decomposition determination. Food Anal Methods. https://doi.org/10.1007/s12161-021-02064-7

    Article  Google Scholar 

  34. Cozzolino D, Murray I (2012) A review on the application of infrared technologies to determine and monitor composition and other quality characteristics in raw fish, fish products, and seafood. Appl Spectrosc Rev 47:207–218. https://doi.org/10.1080/05704928.2011.639106

    Article  Google Scholar 

  35. Cheng J-H, Sun D-W, Qu J-H et al (2016) Developing a multispectral imaging for simultaneous prediction of freshness indicators during chemical spoilage of grass carp fish fillet. J Food Eng 182:9–17. https://doi.org/10.1016/j.jfoodeng.2016.02.004

    Article  CAS  Google Scholar 

  36. Quevedo R, Aguilera JM (2010) Computer vision and stereoscopy for estimating firmness in the salmon (Salmon salar) fillets. Food Bioprocess Technol 3:561–567. https://doi.org/10.1007/s11947-008-0097-3

    Article  Google Scholar 

  37. Shan J, Wang X, Russel M et al (2018) Comparisons of fish morphology for fresh and frozen-thawed crucian carp quality assessment by hyperspectral imaging technology. Food Anal Methods 11:1701–1710. https://doi.org/10.1007/s12161-018-1158-5

    Article  Google Scholar 

  38. Madigan T, Kiermeier A, Carragher J et al (2013) The use of rapid instrumental methods to assess freshness of half shell Pacific oysters, Crassostrea gigas: A feasibility study. Innov Food Sci Emerg Technol 19:204–209. https://doi.org/10.1016/j.ifset.2013.04.005

  39. Fasolato L, Balzan S, Riovanto R et al (2012) Comparison of visible and near-infrared reflectance spectroscopy to authenticate fresh and frozen-thawed swordfish (Xiphias gladius L.). J Aquat Food Prod Technol 21:493–507. https://doi.org/10.1080/10498850.2011.615103

    Article  Google Scholar 

  40. Misimi E, Erikson U, Digre H, et al (2008) Computer vision-based evaluation of pre-and post rigor changes in size and shape of Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar) fillets during rigor mortis and ice storage: Effects of perimortem handling stress. J Food Sci 73:E57–E68. https://doi.org/10.1111/j.1750-3841.2007.00626.x

  41. Ottavian M, Facco P, Fasolato L et al (2012) Use of near-infrared spectroscopy for fast fraud detection in seafood: Application to the authentication of wild European sea bass (Dicentrarchus labrax). J Agric Food Chem 60:639–648. https://doi.org/10.1021/jf203385e

    Article  CAS  PubMed  Google Scholar 

  42. Bøknæs N, Jensen KN, Andersen CM, Martens H (2002) Freshness assessment of thawed and chilled cod fillets packed in modified atmosphere using near-infrared spectroscopy. LWT - Food Sci Technol 35:628–634. https://doi.org/10.1006/fstl.2002.0923

    Article  Google Scholar 

  43. Brown MR (2011) Rapid compositional analysis of oysters using visible-near infrared reflectance spectroscopy. Aquaculture 317:233–239. https://doi.org/10.1016/j.aquaculture.2011.04.017

    Article  Google Scholar 

  44. Hernández-Martínez M, Gallardo-Velázquez T, Osorio-Revilla G et al (2013) Prediction of total fat, fatty acid composition and nutritional parameters in fish fillets using MID-FTIR spectroscopy and chemometrics. LWT - Food Sci Technol 52:12–20. https://doi.org/10.1016/j.lwt.2013.01.001

    Article  CAS  Google Scholar 

  45. Shi C, Qian J, Zhu W et al (2019) Nondestructive determination of freshness indicators for tilapia fillets stored at various temperatures by hyperspectral imaging coupled with RBF neural networks. Food Chem 275:497–503. https://doi.org/10.1016/j.foodchem.2018.09.092

    Article  CAS  PubMed  Google Scholar 

  46. Costa C, D’Andrea S, Russo R et al (2011) Application of non-invasive techniques to differentiate sea bass (Dicentrarchus labrax, L. 1758) quality cultured under different conditions. Aquac Int 19:765–778. https://doi.org/10.1007/s10499-010-9393-9

    Article  Google Scholar 

  47. Fernandes P (2016) Enzymes in fish and seafood processing. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2016.00059

    Article  PubMed  PubMed Central  Google Scholar 

  48. Khoshnoudi-Nia S, Moosavi-Nasab M (2019) Prediction of various freshness indicators in fish fillets by one multispectral imaging system. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-51264-z

    Article  CAS  Google Scholar 

  49. Franceschelli L, Berardinelli A, Dabbou S et al (2021) Sensing technology for fish freshness and safety: A review. Sensors 21:1373. https://doi.org/10.3390/s21041373

    Article  PubMed  PubMed Central  Google Scholar 

  50. Beattie JR, McGarvey JJ, Stitt AW (2013) Raman spectroscopy for the detection of AGEs/ALEs. Methods Mol Biol 965:297–312. https://doi.org/10.1007/978-1-62703-239-1_20

    Article  CAS  PubMed  Google Scholar 

  51. Elmasry G, Kamruzzaman M, Sun D-W, Allen P (2012) Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review. Crit Rev Food Sci Nutr 52:999–1023. https://doi.org/10.1080/10408398.2010.543495

    Article  PubMed  Google Scholar 

  52. Zhu Gowen A, Feng H et al (2020) Deep spectral-spatial features of near infrared hyperspectral images for pixel-wise classification of food products. Sensors (Switzerland) 20:1–20. https://doi.org/10.3390/s20185322

    Article  CAS  Google Scholar 

  53. Hassoun A, Ojha S, Tiwari B et al (2020) Monitoring thermal and non-thermal treatments during processing of muscle foods: A comprehensive review of recent technological advances. Appl Sci. https://doi.org/10.3390/app10196802

    Article  Google Scholar 

  54. Cheng J-H, Nicolai B, Sun D-W (2017) Hyperspectral imaging with multivariate analysis for technological parameters prediction and classification of muscle foods: A review. Meat Sci. 123:182–191

    Article  PubMed  Google Scholar 

  55. Ma J, Sun D-W, Qu J-H, Pu H-B (2017) Prediction of textural changes in grass carp fillets as affected by vacuum freeze drying using hyperspectral imaging based on integrated group wavelengths. LWT - Food Sci Technol 82:377–385. https://doi.org/10.1016/j.lwt.2017.04.040

    Article  CAS  Google Scholar 

  56. He H-J, Sun D-W (2015) Toward enhancement in prediction of Pseudomonas counts distribution in salmon fillets using NIR hyperspectral imaging. LWT - Food Sci Technol 62:11–18. https://doi.org/10.1016/j.lwt.2015.01.036

    Article  CAS  Google Scholar 

  57. Wu D, Sun D-W, He Y (2014) Novel non-invasive distribution measurement of texture profile analysis (TPA) in salmon fillet by using visible and near infrared hyperspectral imaging. Food Chem 145:417–426. https://doi.org/10.1016/j.foodchem.2013.08.063

    Article  CAS  PubMed  Google Scholar 

  58. Wang X, Shan J, Han S et al (2019) Optimization of fish quality by evaluation of total volatile basic nitrogen (TVB-N) and texture profile analysis (TPA) by near-infrared (NIR) hyperspectral imaging. Anal Lett 52:1845–1859. https://doi.org/10.1080/00032719.2019.1571077

    Article  CAS  Google Scholar 

  59. Cheng J-H, Sun D-W (2017) Partial least squares regression (PLSR) applied to NIR and HSI spectral data modeling to predict chemical properties of fish muscle. Food Eng Rev 9:36–49. https://doi.org/10.1007/s12393-016-9147-1

    Article  CAS  Google Scholar 

  60. Xu J-L, Riccioli C, Sun D-W (2016) Efficient integration of particle analysis in hyperspectral imaging for rapid assessment of oxidative degradation in salmon fillet. J Food Eng 169:259–271. https://doi.org/10.1016/j.jfoodeng.2015.08.015

    Article  CAS  Google Scholar 

  61. Moosavi-Nasab M, Khoshnoudi-Nia S, Azimifar Z, Kamyab S (2021) Evaluation of the total volatile basic nitrogen (TVB-N) content in fish fillets using hyperspectral imaging coupled with deep learning neural network and meta-analysis. Sci Rep 11:5094. https://doi.org/10.1038/s41598-021-84659-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Temiz HT, Ulaş B (2021) A review of recent studies employing hyperspectral imaging for the determination of food adulteration. Photochem 1:125–146. https://doi.org/10.3390/photochem1020008

    Article  Google Scholar 

  63. Roberts J, Power A, Chapman J et al (2018) A short update on the advantages, applications and limitations of hyperspectral and chemical imaging in food authentication. Appl Sci. https://doi.org/10.3390/app8040505

    Article  Google Scholar 

  64. Paoletti ME, Haut JM, Plaza J, Plaza A (2019) Deep learning classifiers for hyperspectral imaging : A review. ISPRS J Photogramm Remote Sens 158:279–317. https://doi.org/10.1016/j.isprsjprs.2019.09.006

    Article  Google Scholar 

  65. Pallua JD, Brunner A, Zelger B et al (2021) New perspectives of hyperspectral imaging for clinical research. NIR news 32:5–13. https://doi.org/10.1177/09603360211024971

    Article  Google Scholar 

  66. Cozzolino D, Roberts J (2016) Applications and developments on the use of vibrational spectroscopy imaging for the analysis, monitoring and characterisation of crops and plants. Molecules 21:755. https://doi.org/10.3390/molecules21060755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gowen AA, Tiwari BK, Cullen PJ et al (2010) Applications of thermal imaging in food quality and safety assessment. Trends Food Sci Technol 21:190–200. https://doi.org/10.1016/j.tifs.2009.12.002

    Article  CAS  Google Scholar 

  68. Xu J-L, Riccioli C, Sun D-W (2017) Comparison of hyperspectral imaging and computer vision for automatic differentiation of organically and conventionally farmed salmon. J Food Eng 196:170–182. https://doi.org/10.1016/j.jfoodeng.2016.10.021

    Article  CAS  Google Scholar 

  69. Sun D-W (2010) Hyperspectral Imaging for Food Quality Analysis and Control. Elsevier, San Diego

    Google Scholar 

  70. Cui S, Zhou Y, Wang Y, Zhai L (2020) Fish detection using deep learning. Appl Comput Intell Soft Comput 2020:1–13. https://doi.org/10.1155/2020/3738108

    Article  Google Scholar 

  71. Adão T, Hruška J, Pádua L et al (2017) Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens 9:1110. https://doi.org/10.3390/rs9111110

    Article  Google Scholar 

  72. Xu J-L, Esquerre C, Sun D-W (2018) Methods for performing dimensionality reduction in hyperspectral image classification. J Near Infrared Spectrosc 26:61–75. https://doi.org/10.1177/0967033518756175

    Article  CAS  Google Scholar 

  73. Fei B (2020) Chapter 3.6 - hyperspectral imaging in medical applications. In: Amigo JM (ed) Data Handling in Science and Technology. Elsevier, Oxford, pp 523–565

    Google Scholar 

  74. Lorente D, Aleixos BMN, Gómez-Sanchís J et al (2013) Selection of optimal wavelength features for decay detection in citrus fruit using the ROC curve and neural networks. Food Bioprocess Technol 6:530–541. https://doi.org/10.1007/s11947-011-0737-x

    Article  Google Scholar 

  75. Wu D, Sun D-W (2013) Colour measurements by computer vision for food quality control – A review. Trends Food Sci Technol 29:5–20. https://doi.org/10.1016/j.tifs.2012.08.004

    Article  CAS  Google Scholar 

  76. Chen Z, Wang Q, Zhang H, Nie P (2021) Hyperspectral imaging (HSI) technology for the non-destructive freshness assessment of pearl gentian grouper under different storage conditions. Sensors (Switzerland) 21:1–13. https://doi.org/10.3390/s21020583

    Article  CAS  Google Scholar 

  77. Dai Q, Cheng J-H, Sun D-W et al (2015) Potential of visible/near-infrared hyperspectral imaging for rapid detection of freshness in unfrozen and frozen prawns. J Food Eng 149:97–104. https://doi.org/10.1016/j.jfoodeng.2014.10.001

    Article  Google Scholar 

  78. Huang Y, Liu Y, Jin Z et al (2021) Sensory evaluation of fresh/frozen mackerel products: A review. Compr Rev Food Sci Food Saf 20:3504–3530. https://doi.org/10.1111/1541-4337.12776

    Article  PubMed  Google Scholar 

  79. Ghidini S, Varrà MO, Zanardi E (2019) Approaching authenticity issues in fish and seafood products by qualitative spectroscopy and chemometrics. Molecules 24

  80. Ferreira SLC, Silva Junior MM, Felix CSA et al (2019) Multivariate optimization techniques in food analysis – A review. Food Chem 273:3–8. https://doi.org/10.1016/j.foodchem.2017.11.114

    Article  CAS  PubMed  Google Scholar 

  81. Liu M, Shi J, Li Z et al (2017) Towards better analysis of deep convolutional neural networks. IEEE Trans Vis Comput Graph 23:91–100. https://doi.org/10.1109/TVCG.2016.2598831

    Article  PubMed  Google Scholar 

  82. Li Y, Tan X, Zhang W et al (2021) Research and application of several key techniques in hyperspectral image preprocessing. Front Plant Sci. https://doi.org/10.3389/fpls.2021.627865

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kohler A, Zimonja M, Segtnan V, Martens H (2009) Standard normal variate, multiplicative signal correction and extended multiplicative signal correction preprocessing in biospectroscopy. In: Walczak SDBT (ed) Comprehensive Chemometrics. Elsevier, Oxford, pp 139–162

    Chapter  Google Scholar 

  84. Ruiz-Perez D, Guan H, Madhivanan P et al (2020) So you think you can PLS-DA? BMC Bioinformatics 21:2. https://doi.org/10.1186/s12859-019-3310-7

    Article  PubMed  PubMed Central  Google Scholar 

  85. Qu J-H, Sun D-W, Cheng J-H, Pu H (2017) Mapping moisture contents in grass carp (Ctenopharyngodon idella ) slices under different freeze drying periods by Vis-NIR hyperspectral imaging. LWT - Food Sci Technol 75:529–536. https://doi.org/10.1016/j.lwt.2016.09.024

    Article  CAS  Google Scholar 

  86. Xu J-L, Riccioli C, Sun D-W (2016) Development of an alternative technique for rapid and accurate determination of fish caloric density based on hyperspectral imaging. J Food Eng 190:185–194. https://doi.org/10.1016/j.jfoodeng.2016.06.007

    Article  Google Scholar 

  87. Wu D, Sun D-W (2013) Application of visible and near infrared hyperspectral imaging for non-invasively measuring distribution of water-holding capacity in salmon flesh. Talanta 116:266–276. https://doi.org/10.1016/j.talanta.2013.05.030

    Article  CAS  PubMed  Google Scholar 

  88. He H-J, Wu D, Sun D-W (2013) Non-destructive and rapid analysis of moisture distribution in farmed Atlantic salmon (Salmo salar) fillets using visible and near-infrared hyperspectral imaging. Innov Food Sci Emerg Technol 18:237–245. https://doi.org/10.1016/j.ifset.2013.02.009

    Article  Google Scholar 

  89. Sone I, Olsen RL, Sivertsen AH et al (2012) Classification of fresh Atlantic salmon (Salmo salar L.) fillets stored under different atmospheres by hyperspectral imaging. J Food Eng 109:482–489. https://doi.org/10.1016/j.jfoodeng.2011.11.001

    Article  CAS  Google Scholar 

  90. Sivertsen AH, Kimiya T, Heia K (2011) Automatic freshness assessment of cod (Gadus morhua) fillets by Vis/Nir spectroscopy. J Food Eng 103:317–323. https://doi.org/10.1016/j.jfoodeng.2010.10.030

    Article  Google Scholar 

  91. Zhu F, Zhang D, He Y et al (2013) Application of visible and near infrared hyperspectral imaging to differentiate between fresh and frozen-thawed fish fillets. Food Bioprocess Technol 6:2931–2937. https://doi.org/10.1007/s11947-012-0825-6

    Article  CAS  Google Scholar 

  92. Zhang W, Cao A, Shi P, Cai L (2021) Rapid evaluation of freshness of largemouth bass under different thawing methods using hyperspectral imaging. Food Control 125:108023. https://doi.org/10.1016/j.foodcont.2021.108023

    Article  CAS  Google Scholar 

  93. Ma J, Pu H-B, Sun D-W et al (2015) Application of Vis-NIR hyperspectral imaging in classification between fresh and frozen-thawed pork Longissimus Dorsi muscles. Int J Refrig 50:10–18. https://doi.org/10.1016/j.ijrefrig.2014.10.024

    Article  Google Scholar 

  94. Hassoun A, Ojha S, Tiwari B et al (2020) Inactivation of Salmonella typhimurium by non-thermal plasma bubbles: Exploring the key reactive species and the influence of organic matter. Foods 9:728–742. https://doi.org/10.1016/j.meatsci.2021.108453

    Article  CAS  Google Scholar 

  95. Pennisi F, Giraudo A, Cavallini N et al (2021) Differentiation between fresh and thawed cephalopods using NIR spectroscopy and multivariate data analysis. Foods 10:528. https://doi.org/10.3390/foods10030528

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lorente D, Aleixos N, Gómez-Sanchis J et al (2012) Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol 5:1121–1142. https://doi.org/10.1007/s11947-011-0725-1

    Article  Google Scholar 

  97. Kamruzzaman M, Sun D-W, ElMasry G, Allen P (2013) Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta 103:130–136. https://doi.org/10.1016/j.talanta.2012.10.020

    Article  CAS  PubMed  Google Scholar 

  98. Barbin DF, Sun D-W, Su C (2013) NIR hyperspectral imaging as non-destructive evaluation tool for the recognition of fresh and frozen-thawed porcine longissimus dorsi muscles. Innov Food Sci Emerg Technol 18:226–236. https://doi.org/10.1016/j.ifset.2012.12.011

    Article  CAS  Google Scholar 

  99. Barbin DF, ElMasry G, Sun D-W, Allen P (2013) Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. Food Chem 138:1162–1171. https://doi.org/10.1016/j.foodchem.2012.11.120

    Article  CAS  PubMed  Google Scholar 

  100. Kamruzzaman M, Barbin D, ElMasry G et al (2012) Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat. Innov Food Sci Emerg Technol 16:316–325. https://doi.org/10.1016/j.ifset.2012.07.007

    Article  CAS  Google Scholar 

  101. Wu D, Sun D-W (2013) Potential of time series-hyperspectral imaging (TS-HSI) for non-invasive determination of microbial spoilage of salmon flesh. Talanta 111:39–46. https://doi.org/10.1016/j.talanta.2013.03.041

    Article  CAS  PubMed  Google Scholar 

  102. Rohart F, Gautier B, Singh A, Lê Cao K-A (2017) MixOmics: An R package for omics feature selection and multiple data integration. PLOS Comput Biol 13:e1005752. https://doi.org/10.1371/journal.pcbi.1005752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brereton RG, Lloyd GR (2014) Partial least squares discriminant analysis: Taking the magic away. J Chemom 28:213–225. https://doi.org/10.1002/cem.2609

    Article  CAS  Google Scholar 

  104. Christin C, Hoefsloot HCJ, Smilde AK et al (2013) A critical assessment of feature selection methods for biomarker discovery in clinical proteomics. Mol Cell Proteomics 12:263–276. https://doi.org/10.1074/mcp.M112.022566

    Article  CAS  PubMed  Google Scholar 

  105. Wu D, Sun DW (2016) The use of hyperspectral techniques in evaluating quality and safety of meat and meat products

  106. Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692. https://doi.org/10.1093/biomet/78.3.691

  107. Wu D, Sun D-W, He Y (2012) Application of long-wave near infrared hyperspectral imaging for measurement of color distribution in salmon fillet. Innov Food Sci Emerg Technol 16:361–372. https://doi.org/10.1016/j.ifset.2012.08.003

    Article  Google Scholar 

  108. Verboven S, Hubert M (2005) LIBRA: A MATLAB library for robust analysis. Chemom Intell Lab Syst 75:127–136. https://doi.org/10.1016/j.chemolab.2004.06.003

    Article  CAS  Google Scholar 

  109. Audebert N, Le Saux B, Lefevre S (2019) Deep learning for classification of hyperspectral data: A comparative review. IEEE Geosci Remote Sens Mag 7:159–173. https://doi.org/10.1109/MGRS.2019.2912563

    Article  Google Scholar 

  110. Fu X, Chen J (2019) A review of hyperspectral imaging for chicken meat safety and quality evaluation: Application, hardware, and software. Compr Rev Food Sci Food Saf 18:535–547. https://doi.org/10.1111/1541-4337.12428

    Article  PubMed  Google Scholar 

  111. Al-Sarayreh M, Reis MM, Yan WQ, Klette R (2020) Potential of deep learning and snapshot hyperspectral imaging for classification of species in meat. Food Control 117:107332. https://doi.org/10.1016/j.foodcont.2020.107332

    Article  CAS  Google Scholar 

  112. Wu X, Song X, Qiu Z, He Y (2016) Mapping of TBARS distribution in frozen-thawed pork using NIR hyperspectral imaging. Meat Sci 113:92–96. https://doi.org/10.1016/j.meatsci.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  113. Segtnan VH, Høy M, Lundby F et al (2009) Fat distribution analysis in salmon fillets using non-contact near infrared interactance in aging: A sampling and calibration strategy. J Near Infrared Spectrosc 17:247–253

    Article  CAS  Google Scholar 

  114. Khoshnoudi-Nia S, Moosavi-Nasab M (2019) Comparison of various chemometric analysis for rapid prediction of thiobarbituric acid reactive substances in rainbow trout fillets by hyperspectral imaging technique. Food Sci Nutr 7:1875–1883. https://doi.org/10.1002/fsn3.1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Garrido-Novell C, Garrido-Varo A, Pérez-Marín D, Guerrero JE (2018) Using spectral and textural data extracted from hyperspectral near infrared spectroscopy imaging to discriminate between processed pork, poultry and fish proteins. Chemom Intell Lab Syst 172:90–99. https://doi.org/10.1016/j.chemolab.2017.11.011

    Article  CAS  Google Scholar 

  116. Zhu FL, Zhang HL, Shao YN, He Y (2014) Visualization of the chilling storage time for turbot flesh based on hyperspectral imaging technique. Spectrosc Spectr Anal 34:1938–1942

    CAS  Google Scholar 

  117. Ma J, Qu J-H, Sun D-W (2017) Developing hyperspectral prediction model for investigating dehydrating and rehydrating mass changes of vacuum freeze dried grass carp fillets. Food Bioprod Process 104:66–76. https://doi.org/10.1016/j.fbp.2017.04.007

  118. Cheng J-H, Sun D-W, Pu H, Zhu Z (2015) Development of hyperspectral imaging coupled with chemometric analysis to monitor K value for evaluation of chemical spoilage in fish fillets. Food Chem 185:245–253. https://doi.org/10.1016/j.foodchem.2015.03.111

    Article  CAS  PubMed  Google Scholar 

  119. Wang X, Russel M, Zhang Y et al (2019) A clustering-based partial least squares method for improving the freshness prediction model of crucian carps fillets by hyperspectral image technology. Food Anal Methods 12:1988–1997. https://doi.org/10.1007/s12161-019-01541-4

    Article  Google Scholar 

  120. Aït-Kaddour A, Andueza D, Dubost A et al (2020) Visible and near-infrared multispectral features in conjunction with artificial neural network and partial least squares for predicting biochemical and micro-structural features of beef muscles. Foods 9:1254. https://doi.org/10.3390/foods9091254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tahmasbian I, Morgan NK, Bai SH et al (2021) Comparison of hyperspectral imaging and near-infrared spectroscopy to determine nitrogen and carbon concentrations in wheat. Remote Sens 13:1128. https://doi.org/10.3390/rs13061128

    Article  Google Scholar 

  122. Mendez J, Mendoza L, Cruz-Tirado JP et al (2019) Trends in application of NIR and hyperspectral imaging for food authentication. Sci Agropecu 10:143–161. https://doi.org/10.17268/sci.agropecu.2018.01.16

  123. Menesatti P, Costa C, Aguzzi J (2010) Quality evaluation of fish by hyperspectral imaging. In: Sun D-W (ed) Hyperspectral Imaging for Food Quality Analysis and Control. Academic Press, Cambridge, pp 273–294

    Chapter  Google Scholar 

  124. Siche R, Vejarano R, Aredo V et al (2016) Evaluation of food quality and safety with hyperspectral imaging (HSI). Food Eng Rev 8:306–322. https://doi.org/10.1007/s12393-015-9137-8

    Article  Google Scholar 

  125. Cummins EJ, Lyng JG (2016) Emerging Technologies in Meat Processing. John Wiley & Sons, Ltd, Chichester, UK

  126. Wu L, Pu H, Sun D-W (2019) Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments. Trends Food Sci Technol 83:259–273. https://doi.org/10.1016/j.tifs.2018.12.002

    Article  CAS  Google Scholar 

  127. Yu H, Gao L, Li J et al (2016) Spectral-spatial hyperspectral image classification using subspace-based support vector machines and adaptive Markov random fields. Remote Sens 8:355. https://doi.org/10.3390/rs8040355

    Article  Google Scholar 

  128. Cheng J-H, Sun D-W, Wei Q (2017) Enhancing visible and near-infrared hyperspectral imaging prediction of TVB-N level for fish fillet freshness evaluation by filtering optimal variables. Food Anal Methods 10:1888–1898. https://doi.org/10.1007/s12161-016-0742-9

    Article  Google Scholar 

  129. Cheng J-H, Sun D-W (2015) Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral imaging and multivariate analysis. LWT 62:1060–1068. https://doi.org/10.1016/j.lwt.2015.01.021

    Article  CAS  Google Scholar 

  130. Ahmad M, Shabbir S, Roy SK et al (2021) Hyperspectral image classification-traditional to deep models: A survey for future prospects. https://doi.org/10.1109/JSTARS.2021.3133021

    Article  Google Scholar 

  131. Beguería S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37:315–329. https://doi.org/10.1007/s11069-005-5182-6

    Article  Google Scholar 

  132. Li Y, Zhang H, Shen Q (2017) Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens 9:67. https://doi.org/10.3390/rs9010067

  133. Liang H, Li Q (2016) Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens 8:99. https://doi.org/10.3390/rs8020099

    Article  Google Scholar 

  134. Kawaguchi S, Nishii R (2007) Hyperspectral image classification by bootstrap adaboost with random decision stumps. IEEE Trans Geosci Remote Sens 45:3845–3851. https://doi.org/10.1109/TGRS.2007.903708

    Article  Google Scholar 

  135. Barbosa RM, Nelson DR (2016) The use of support vector machine to analyze food security in a region of Brazil. Appl Artif Intell 30:318–330. https://doi.org/10.1080/08839514.2016.1169048

    Article  Google Scholar 

  136. Vincent P, Larochelle H, Lajoie I et al (2010) Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408. https://doi.org/10.5555/1756006.1953039

    Article  Google Scholar 

  137. Chen Y, Zhao X, Jia X (2015) Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J Sel Top Appl Earth Obs Remote Sens 8:2381–2392. https://doi.org/10.1109/JSTARS.2015.2388577

    Article  Google Scholar 

Download references

Acknowledgements

Financial support is received by the first author from the Ministry of Higher Education Malaysia (MOHE) during his PhD study.

Author information

Authors and Affiliations

Authors

Contributions

Azfar Ismail: investigation, resources, writing-original draft. Dong-Gyun Yim: methodology, validation, writing-review and editing. Ghiseok Kim: data curation, software, writing-review and editing. Cheorun Jo: conceptualization, supervision, writing-review and editing.

Corresponding author

Correspondence to Cheorun Jo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, A., Yim, DG., Kim, G. et al. Hyperspectral Imaging Coupled with Multivariate Analyses for Efficient Prediction of Chemical, Biological and Physical Properties of Seafood Products. Food Eng Rev 15, 41–55 (2023). https://doi.org/10.1007/s12393-022-09327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-022-09327-x

Keywords

Navigation