Skip to main content

Advertisement

Log in

Shape Analysis of Agricultural Products: A Review of Recent Research Advances and Potential Application to Computer Vision

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The appearance of agricultural products deeply conditions their marketing. Appearance is normally evaluated by considering size, shape, form, colour, freshness condition and finally the absence of visual defects. Among these features, the shape plays a crucial role. Description of agricultural product shape is often necessary in research fields for a range of different purposes, including the investigation of shape traits heritability for cultivar descriptions, plant variety or cultivar patents and evaluation of consumer decision performance. This review reports the main applications of shape analysis on agricultural products such as relationships between shape and: (1) genetic; (2) conformity and condition ratios; (3) products characterization; (4) product sorting and finally, (5) clone selection. Shape can be a protagonist of evaluation criteria only if an appreciable level of image shape processing and automation and data are treated with solid multivariate statistic. In this context, image-processing algorithms have been increasingly developed in the last decade in order to objectively measure the external features of agricultural products. Grading and sorting of agricultural products using machine vision in conjunction with pattern recognition techniques offers many advantages over the conventional optical or mechanical sorting devices. With this aims, we propose a new automated shape processing system which could be useful for both scientific and industrial purposes, forming the bases of a common language for the scientific community. We applied such a processing scheme to morphologically discriminate nuts fruit of different species. Operative Matlab codes for shape analysis are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdullah, M. Z., Mohamad-Saleh, J., Fathinul-Syahir, A. S., & Mohd-Azemi, B. M. N. (2006). Discrimination and classification of fresh-cut starfruits (Averrhoa carambola L.) using automated machine vision system. Journal of Food Engineering, 76, 506–523.

    Google Scholar 

  • Aguzzi, J., Costa, C., Antonucci, F., Company, J. B., Menesatti, P., & Sardá, F. (2009). Influence of diel behaviour in the morphology of decapod natantia. Biological Journal of the Linnaean Society, 96, 517–532.

    Google Scholar 

  • Aguzzi, J., Costa, C., Fujiwara, Y., Iwase, R., Ramirez-Llorda, E., & Menesatti, P. (2009). A novel morphometry-based protocol of automated video-image analysis for species recognition and activity rhythms monitoring in deep-sea fauna. Sensors, 9, 8438–8455.

    Google Scholar 

  • Alpert, K. B., Grandillo, S., & Tanksley, S. D. (1995). fw2.2: a major QTL controlling fruit weight is common to both red- and green fruited tomato species. Theoretical and Applied Genetics, 91, 994–1000.

    Google Scholar 

  • Antonucci, F., Costa, C., Pallottino, F., Paglia, G., Rimatori, V., De Giorgio, D., Menesatti, P. (2011). Quantitative method for shape description of almond cultivars (Prunus amygdalus Batsch). Food and Bioprocess Technology. doi:10.1007/s11947-010-0389-2.

  • Batchelor, B. C., Hill, D. A., & Hodgson, D. C. (1985). Automated visual inspection. London: IFS.

    Google Scholar 

  • Beyer, M., Hahn, R., Peschel, S., Harz, M., & Knoche, B. (2002). Analyzing fruit shape in sweet cherry (Prunus avium L.). Scientia Horticolturae, 96, 139–150.

    Google Scholar 

  • Bezier, P. E. (1970). Emploi des machines a` comande nume´rique. Paris: Ed. Masson.

    Google Scholar 

  • Blasco, J., Aleixos, N., Cubero, S., Gómez-Sanchís, J., & Moltó, E. (2009). Automatic sorting of satsuma (Citrus unshiu) segments using computer vision and morphological features. Computers and Electronics in Agriculture, 66, 1–8.

    Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. New York: Cambridge Univ. Press. 435 pp.

    Google Scholar 

  • Bookstein, F. L. (1996). Landmark method for forms without landmarks: morphometrics of group difference in outline shape. Medical Image Analysis, 1(3), 225–243.

    Google Scholar 

  • Brewer, M. T., Lang, L., Fujimura, K., Dujmovic, N., Gray, S., & van der Knaap, E. (2006). Development of a controlled vocabulary and software application to analyze fruit shape variation in tomato and other plant species. Plant Physiology, 141, 15–25.

    CAS  Google Scholar 

  • Brewer, M. T., Moyseenko, J. B., Monforte, A. J., & van der Knaap, E. (2007). Morphological variation in tomato: a comprehensive study of quantitative trait loci controlling fruit shape and development. Journal of Experimental Botany, 58(6), 1339–1349.

    CAS  Google Scholar 

  • Brown, A. G. (1960). The inheritance of shape, size and season in progenies of the cultivated apple. Euphytica, 9, 327–337.

    Google Scholar 

  • Bruskiewich, R., Coe, E. H., Jaiswal, P., McCouch, S., Polacco, M., Stein, L., et al. (2002). The Plant Ontology™ consortium and plant ontologies. Comparative and Functional Genomics, 3(2), 137–142.

    Google Scholar 

  • Bylesjo, M., Rantalainen, M., Cloarec, O., Nicholson, J. K., Holmes, E., & Trygg, J. (2006). OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics, 20, 341–351.

    Google Scholar 

  • Cannon, C. H., & Manos, P. S. (2001). Combining and comparing morphometric shape descriptors with a molecular phylogeny: the case of fruit type evolution in Bornean Lithocarpus (Fagaceae). Systematic Biology, 50(6), 860–880.

    CAS  Google Scholar 

  • Capoccioni, F., Costa, C., Menesatti, P., Lombarte, A., Aguzzi, J., & Ciccotti, E. (2009). Otolith growth allometry measurements in the European eel. Instrumentation Viewpoint, 8, 71–72.

    Google Scholar 

  • Casale, M., Armanino, C., Casolino, C., & Forina, M. (2007). Combining information from headspace mass spectrometry and visible spectroscopy in the classification of the Ligurian olive oils. Analytical Chimica Acta, 589, 89–95.

    CAS  Google Scholar 

  • Choudhary, R., Paliwal, J., & Jayas, D. S. (2008). Classification of cereal grains using wavelet, morphological, colour, and textural features of non-touching kernel images. Biosystems Engineering, 99, 330–337.

    Google Scholar 

  • Costa, C., Loy, A., Cataudella, S., Davis, D., & Scardi, M. (2006). Extracting fish size using dual underwater cameras. Aquacultural Engineering, 35(3), 218–227.

    Google Scholar 

  • Costa, C., Aguzzi, J., Menesatti, P., Antonucci, F., Rimatori, V., & Mattoccia, M. (2008). Shape analysis of different populations of clams in relation to their geographical structure. Journal of Zoology, 276, 71–80.

    Google Scholar 

  • Costa, C., Menesatti, P., Paglia, G., Pallottino, F., Aguzzi, J., Rimatori, V., et al. (2009). Quantitative evaluation of Tarocco sweet orange fruit shape using opto-electronic elliptic Fourier based analysis. Postharvest Biology and Technonology, 54, 38–47.

    Google Scholar 

  • Costa, C., Scardi, M., Vitalini, V., & Cataudella, S. (2009). A dual camera system for counting and sizing Northern Bluefin Tuna (Thunnus thynnus; Linnaeus, 1758) stock, during transfer to aquaculture cages, with a semi automatic Artificial Neural Network tool. Aquaculture, 291(3–4), 161–167.

    Google Scholar 

  • Costa, C., Menesatti, P., Aguzzi, J., D’Andrea, S., Antonucci, F., Rimatori, V., et al. (2010). External shape differences between sympatric populations of commercial clams Tapes decussatus and T. philippinarum. Food and Bioprocess Technology, 3(1), 43–48.

    Google Scholar 

  • Crampton, J. S. (1995). Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia, 28, 179–186.

    Google Scholar 

  • Currie, A. J., Ganeshanandam, S., Noiton, D. A., Garrick, D., Shelbourne, C. J. A., & Oraguzie, N. (2000). Quantitative evaluation of apple (Malus x domestica Borkh.) fruit shape by principal component analysis and Fourier descriptors. Euphytica, 111, 219–227.

    Google Scholar 

  • De Giorgio, D., Macchia, M., Stelluti, M., & Lanza, F. (1996). Collection of 205 almond tree cultivars in “seedling rootstocks” field of Istituto Sperimentale Agronomico (BA), descriptive monograph. Agricoltura Ricerca XVII, ISMEA, 162, 55–161.

    Google Scholar 

  • Diamond, J. (2002). Evolution, consequences and future of plant and animal domestication. Nature, 418, 700–707.

    CAS  Google Scholar 

  • Ding, W., Nesumi, H., Takano, Y., & Ukai, Y. (2000). Quantitative evaluation of three-dimensional fruit shape and size of Citrus species based on spherical harmonic descriptors. Euphytica, 114, 103–115.

    Google Scholar 

  • Doganlar, S., Frary, A., Daunay, M. C., Lester, R. N., & Tanksley, S. D. (2002). Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics, 161, 1713–1726.

    CAS  Google Scholar 

  • Engels, H. (1986). A least squares method for estimation of Bezier curves and surface and its applicability to multivariate analysis. Mathematical Bioscience, 79(2), 1–16.

    Google Scholar 

  • Eom, S. (2008). http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12746&objectType=FILE.

  • Forina, M. (2006). I metodi chemometrici di classificazione: a cosa servono e come sono utilizzati. Proceedings of the Nir Italia 2006, 25–26 May 2006 Ferrara.

  • Ghazanfari, A., Irudayaraj, J., Kusalik, A., & Romaniuk, M. (1997). Machine vision grading of pistachio nuts using Fourier descriptors. Journal of Agricultural Engineering Research, 68, 247–252.

    Google Scholar 

  • Goto, S., Iwata, H., Shibano, S., Ohya, K., Suzuki, A., & Ogawa, H. (2005). Fruit shape variation in Fraxinus mandshurica var. japonica characterized using elliptic Fourier descriptors and the effect on flight duration. Ecological Research, 20, 733–738.

    Google Scholar 

  • Gülcan, R. (1985). Descriptors list for Almond (Prunus amygdalus; Revised). International Board for Plant Genetic Resources (IBPGR), 30 pp.

  • Hedrick, U. P. (1938). Cyclopediea of hardy fruits (2nd ed.). New York: MacMillan.

    Google Scholar 

  • Hirose, T., Yoshida, M., Nemoto, H., Kitabayashi, H., Minami, M., Matano, T., et al. (1995). Diversity of grain character of tartary buckwheat in Nepal. In T. Matano & A. Ujihara (Eds.), Current advances in buckwheat research (pp. 385–388). Nagano: Shinshu University Press.

    Google Scholar 

  • Hodgson, R. W. (1967). Horticultural varieties of citrus. In W. Reuther, H. J. Webber, & L. D. Bachelor (Eds.), The Citrus Industry (Vol. 1, pp. 431–459). Berkeley: University of California.

    Google Scholar 

  • INC (2002). Official response to draft report of joint World Health Organization (WHO) Food and Agriculture Organization (FAO) Expert consultation on diet, nutrition and the prevention of chronic diseases. Available from: http://www.nuthealth.org/nutrition/INC-ResponsetoWHO-FAOExpertPanelReport-June15.doc.

  • IPGRI. (1994). Descriptors for buckwheat (Fagopyrum spp.) (p. 48). Rome: International Plant Genetic Resources Institute.

    Google Scholar 

  • IPGRI. (1996). Descriptors for tomato (Lycopersicon spp.). Rome: IPGRI.

    Google Scholar 

  • IPGRI (1999). Descriptors for Citrus. International Plant Genetic Resources Institute, Rome, Italy. ISBN 92-9043-425-2 (URL: <http://www.cgiar.org/ipgri/>).

  • Jahns, G., Nielsen, H. M., & Wolfgang, P. (2001). Measuring image analysis attributes and modelling fuzzy consumer aspects for tomato quality. Computers and Electronics in Agriculture, 31, 17–29.

    Google Scholar 

  • Jarimopas, B., & Jaisin, N. (2008). An experimental machine vision system for sorting sweet tamarind. Journal of Food Engineering, 89, 291–297.

    Google Scholar 

  • Jayas, D. S., Paliwal, J., & Visen, N. S. (2000). Journal of Agricultural Engineering Research, 77(2), 119–128.

    Google Scholar 

  • Jensen, R. J., Ciofani, K. M., & Miramontes, L. C. (2002). Lines, outlines, and landmarks: morphometric analyses of leaves of Acer rubrum, Acer saccharinum (Aceraceae) and their hybrid. Taxon, 51, 475–492.

    Google Scholar 

  • Kays, S. J. (1991). Postharvest physiology of perishable plant products. New York: Van Nostrand Reinholt.

    Google Scholar 

  • Kays, S. J. (1999). Preharvest factors affecting appearance. Postharvest Biology and Technology, 15, 233–247.

    Google Scholar 

  • Kennard, R. W., & Stone, L. A. (1969). Computer aided design of experiments. Technometrics, 11, 137–148.

    Google Scholar 

  • Khanizadeh, S. (1994). Breeding strawberries for Eastern Central Canada. Euphytica, 77, 45–49.

    Google Scholar 

  • Koc, A. B. (2007). Determination of watermelon volume using ellipsoid approximation and image processing. Postharvest Biology and Technology, 45, 366–371.

    Google Scholar 

  • Ku, H. M., Doganlar, S., Chen, K. Y., & Tanksley, S. D. (1999). The genetic basis of pear-shaped tomato fruit. Theoretical and Applied Genetics, 9, 844–850.

    Google Scholar 

  • Lawless, H., & Heymann, H. (1998). Sensory evaluation of food—principles and practices. New York: Chapman & Hall.

    Google Scholar 

  • Lestrel, P. E. (1997). Fourier descriptors and their applications in biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Li, J., Xiao, J., Grandillo, S., Jiang, L., Wan, Y., Deng, Q., et al. (2004). QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome, 47, 697–704.

    CAS  Google Scholar 

  • Liming, X., & Yanchao, Z. (2010). Automated strawberry grading system based on image processing. Computers and Electronics in Agriculture, 71, 32–39.

    Google Scholar 

  • Loy, A., Busilacchi, S., Costa, C., Ferlin, L., & Cataudella, S. (2000). Comparing geometric morphometrics and outlines fitting methods to monitor fish shape variability of Diplodus puntazzo (Teleostea, Sparidae). Aquacultural Engineering, 21(4), 271–283.

    Google Scholar 

  • Masters, T. (1994). Signal and image processing with neural networks: a C++ sourcebook. New York: Wiley.

    Google Scholar 

  • Matano, T., & Ujihara, A. (1973). Agroecotypes of Fagopyrum II. Classification of common buckwheat (Fagopyrum esculentum Moench.) by kernel shape and these geographical distribution in Japan (in Japanese). Japanese Journal of Crop Science, 42(Suppl 2), 29–30.

    Google Scholar 

  • Menesatti, P., Costa, C., Paglia, G., Pallottino, F., D’Andrea, S., Rimatori, V., et al. (2008). Shape-based methodology for multivariate discrimination among Italian hazelnut cultivars. Biosystem Engineering, 101(4), 417–424.

    Google Scholar 

  • Milanesi, C., Sorbi, A., Paolucci, E., Antonucci, F., Menesatti, P., Costa, C., et al. (2011). Pomology observations, morphometric analysis, ultrastructural study and allelic profiles of “olivastra Seggianese” endocarps from ancient olive trees (Olea europaea L.). Comptes Rendus Biologies, 334(1), 39–49.

    CAS  Google Scholar 

  • Morgan, J., Richards, A., & Dowle, E. (1993). The Book of Apples. London: Ebury.

    Google Scholar 

  • Morimoto, T., Takeuchi, T., Miyata, H., & Hashimoto, Y. (2000). Pattern recognition of fruit shape based on the concept of chaos and neural networks. Computers and Electronics in Agriculture, 26, 171–186.

    Google Scholar 

  • Morimoto, Y., Maundu, P., Fujimaki, H., & Morishima, H. (2005). Diversity of landraces of the white-flowered gourd (Lagenaria siceraria) and its wild relatives in Kenya: fruit and seed morphology. Genetic Resources and Crop Evolution, 52, 737–747.

    Google Scholar 

  • Nerson, H. (2005). Effects of fruit shape and plant density on seed yield and quality of squash. Scientia Horticulturae, 105, 293–304.

    Google Scholar 

  • Ngouajio, M., Kirk, W., & Goldy, R. (2003). A simple model for rapid and nondestructive estimation of bell pepper fruit volume. HortScience, 38(4), 509–511.

    Google Scholar 

  • NIAR. (1992). The manual for characterization and evaluation in plant genetic resources. Part 1. Rice, wheat, barley, legume, root and tuber crop, millet and other cereals, industrial crop (pp. 72–77). Tokyo: National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries.

    Google Scholar 

  • Nunome, T., Ishiguro, K., Yoshida, T., & Hirai, M. (2001). Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.) based on RAPD and AFLP markers. Breeding Science, 51, 19–26.

    CAS  Google Scholar 

  • Ohsawa, R., Tsutsumi, T., Uehara, H., Namai, H., & Ninomiya, S. (1998). Quantitative evaluation of common buckwheat (Fagopyrum esculentum Moench) kernel shape by elliptic Fourier descriptor. Euphytica, 101, 175–183.

    Google Scholar 

  • Pallottino, F., Menesatti, C., Costa, C., Paglia, G., De Salvador, F. R., & Lolletti, D. (2010). Image analysis techniques for automated hazelnut peeling determination. Food and Bioprocess Technology, 3(1), 155–159.

    Google Scholar 

  • Pallottino, F., Costa, C., Menesatti, P., & Moresi, M. (2011). Use of image analysis to assess the effective surface area of orange fruit submitted to uniaxial compression tests. Journal of Food Engineering, 103, 308–316.

    Google Scholar 

  • Parisi-Baradad, V., Lombarte, A., Garcia-Ladona, E., Cabestany, J., Piera, J., & Chic, O. (2005). Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. Marine and Freshwater Research, 56, 795–804.

    Google Scholar 

  • Paulus, I., & Schrevens, E. (1999). Shape characterization of new apple cultivars by Fourier expansion of digitized images. Journal of Agricultural Engineering Research, 72, 113–118.

    Google Scholar 

  • Peterson, P. A. (1959). Linkage of fruit shape and color genes in Capsicum. Genetics, 44, 407–419.

    CAS  Google Scholar 

  • Rabiei, B., Valizadeh, M., Ghareyazie, B., Moghaddam, M., & Ali, A. J. (2004). Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR markers. Euphytica, 137, 325–332.

    CAS  Google Scholar 

  • Riyadi, S., Ishak, A. J., Mustafa, M. M., & Hussain, A. (2008). Wavelet-based feature extraction technique for fruit shape classification. In: 5th International Symposium Mechatronics and Its Applications, 2008. 27–29 May 2008: 1–5.

  • Rodriguez, A., Ehlenberger, D. B., Hof, P. R., & Wearne, S. L. (2006). Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images. Nature Protocols, 1, 2152–2161.

    CAS  Google Scholar 

  • Rohlf, F. J., & Archie, J. W. (1984). A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Systematic Zoology, 3, 302–317.

    Google Scholar 

  • Rohlf, F. J., & Bookstein, F. L. (1990). Proceedings of the Michigan Morphometrics Workshop. Special Publication No. 2. Ann Arbor: The University of Michigan Museum of Zoology.

    Google Scholar 

  • Ruiz-Altisent, N., Ruiz-Garcia, L., Moreda, G. P., Lu, R., Hernandez-Sanchez, N., Correa, E. C., et al. (2010). Sensors for product characterization and quality of specialty crops - A review. Computers and Electronics in Agriculture, 74, 176–194.

    Google Scholar 

  • Sabatier, R., Vivein, M., & Amenta, P. (2003). Two approaches for discriminant partial least square. In M. Schader, W. Gaul, & M. Vichi (Eds.), Between data science and applied data analysis. Berlin: Springer.

    Google Scholar 

  • Sabliov, C. M., Boldor, D., Keener, K. M., & Farkas, B. E. (2002). Image processing method to determine surface area and volume of axi-symmetric agricultural products. International Journal of Food Properties, 5(3), 641–653.

    Google Scholar 

  • Sadrnia, H., Rajabipour, A., Jafary, A., Javadi, A., & Mostofi, Y. (2007). Classification and analysis of fruit shapes in long type watermelon using image processing. International Journal of Agriculture & Biology, 9(1), 68–70.

    Google Scholar 

  • Sakai, N., Yonekawa, S., Matsuzaki, A., & Morishima, H. (1996). Two-dimensional image analysis of the shape of rice and its application to separating varieties. Journal of Food Engineering, 21, 397–407.

    Google Scholar 

  • Sarkar, N., & Wolfe, R. R. (1985). Feature extraction techniques for sorting tomatoes by computer vision. Transactions of the ASAE, 28(3), 970–974.

    Google Scholar 

  • Schmidt, H., Vittup-Christensen, J., Watkins, R., & Smith, R. A. (1985). Cherry descriptor list. Rome: IBPGR.

    Google Scholar 

  • Schneider, G., Artmann, G., & Henning, G. (1995). Automated image processing system for shape recognition of single red blood cells based on out-of-focus images. Biotechnology, 32(2), 237–238.

    Google Scholar 

  • Scott, D. (1998). Hortcouture Fashion Food Conference. Orchardist NZ, Feb, 37–50.

  • Shi, C. H., & Zhu, J. (1997). Analysis of genetic covariances between plant agronomic traits and milling quality traits of indica rice. Journal of the Zhejiang Agriculture University, 23, 331–337.

    Google Scholar 

  • Simigiana, S., & Starkeya, J. (1986). Automated grain shape analysis. Journal of Structural Geology, 8(5), 589–592.

    Google Scholar 

  • Sjöström, M., Wold, S., & Söderström, B. (1986). PLS Discrimination plots. In E. S. Gelsema & L. N. Kanals (Eds.), Pattern recognition in practice II. Amsterdam: Elsevier.

    Google Scholar 

  • Smith, M. W. G. (1971). National apple register of the United Kingdom. London: Ministry of Agriculture, Fisheries and Food.

    Google Scholar 

  • Spinks, G. T. (1936). Apple breeding investigations. I. Results obtained from certain families of seedlings. Annual Report of the Long Ashton Research Station, 1935, 19–49.

    Google Scholar 

  • Tanaka, T., Wimol, S., & Mizutani, T. (1955). Inheritance of fruit shape and seed size of watermelon. Journal of the Japanese Society of Horticultural Science, 64(3), 543–548.

    Google Scholar 

  • Terral, J. F., Alonso, N., Buxò i Capdevila, R., Chatti, N., Fabre, L., Fiorentino, G., et al. (2004). Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. Journal of Biogeography, 31, 63–77.

    Google Scholar 

  • Thibault, B., Watkins, R., & Smith, R. A. (1983). Descriptor list for pear. International Board for Plant Genetic Resources. IBPGR/82/57.

  • Thomas, D. (2006). fEfourier: Matlab function for Elliptical Fourier shape descriptors. http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12746&objectType=FILE.

  • Tominaga, Y. (2006). Comparative study of class data analysis with PCA-LDA, SIMCA, PLS, ANNs, and k-NN. Chemometrics and Intelligent Laboratory Systems, 49(1), 105–115.

    Google Scholar 

  • Tufts, W. P., & Hansen, C. J. (1931). Variations in shape of Bartlett pears. Journal of the American Society of Horticulture, 28, 627–633.

    Google Scholar 

  • Uehera, H., & Namai, H. (1994). Relations among morphological traits of seed and cotyledon and wering habit in common buckwheat (Fagopyrum esculentum; in Japanese). Breeding Science, 44(Suppl 1), 150.

    Google Scholar 

  • United States Department of Agriculture (USDA). (1997). United States Standards for Grades of Watermelons. Washington, D.C: USDA.

    Google Scholar 

  • UPOV (1976). Guidelines for the conduct of test for distintness, homogeneity and stability of the cherry. UPOV, TG/35/3.

  • van der Knaap, E., & Tanksley, S. D. (2003). The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. Theoretical and Applied Genetics, 107, 139–147.

    Google Scholar 

  • van Eck, J. W., van der Heijden, G. W. A. M., & Polder, G. (1998). Accurate measurement of size and shape of cucumber fruits with image analysis. Journal of Agricultural Engineering Research, 70, 335–343.

    Google Scholar 

  • Venora, G., Grillo, O., Shahin, M. A., & Symons, S. J. (2007). Identification of Sicilian landraces and Canadian cultivars of lentil using an image analysis system. Food Research International, 40, 161–166.

    Google Scholar 

  • Venora, G., Grillo, O., Ravalli, C., & Cremonini, R. (2009). Identification of Italian landraces of bean (Phaseolus vulgaris L.) using an image analysis system. Scientia Horticulturae, 121, 410–418.

    Google Scholar 

  • Wang, T. Y., & Nguang, S. K. (2007). Low cost sensor for volume and surface area computation of axi-symmetric agricultural products. Journal of Food Engineering, 79, 870–877.

    Google Scholar 

  • Wang, D. Y., Zhang, X. F., Zhu, Z. W., Chen, N., Min, J., Yao, Q., et al. (2005). Correlation analysis of rice grain quality characteristics. Acta Agronomica Sinica, 31, 1086–1091.

    CAS  Google Scholar 

  • Webb, B. D. (1991). Rice quality and grades. In B. S. Luh (Ed.), Rice utilization, Volume II (2nd ed., pp. 89–119). New York: AVI book.

    Google Scholar 

  • White, A. G., & Alspach, P. A. (1996). Variation in fruit shape in three pear hybrid progenies. New Zealand Journal of Crop and Horticultural Science, 24, 409–413.

    Google Scholar 

  • White, A. G., & Bailey, D. G. (1995). Digital imaging: a useful technique for analysing fruit shape in pears. Fruit Varieties Journal, 49(4), 224–226.

    Google Scholar 

  • White, A. G., Alspach, P. A., Weskett, R. H., & Brewer, L. R. (2000). Heritability of fruit shape in pears. Euphytica, 112, 1–7.

    Google Scholar 

  • Xu, Z. J., Chen, W. F., Ma, D. R., Lu, Y. N., Zhou, S. Q., & Liu, L. X. (2004). Correlations between rice grain shapes and main qualitative characteristics. Acta Agronomica Sinica, 30, 894–900.

    Google Scholar 

  • Xiao, H., Jiang, N., Schaffner, E., Stockinger, E. J., & Van der Knaap, E. (2008). A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science, 319, 1527–1530.

    CAS  Google Scholar 

  • Xiaobo, Z., Jiewen, Z., Yanxiao, L., Jiyong, S., & Xiaoping, Y. (2008). Apples shape grading by Fourier expansion and genetic program algorithm. In: 4th International Conference on Natural Computation IEEE, 18–20 Oct. 2008: 85–90.

  • Yadav, B. K., & Jindal, V. K. (2001). Monitoring milling quality of rice by image analysis. Computers and Electronics in Agriculture, 33, 19–33.

    Google Scholar 

  • Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric morphometrics for biologists: A primer (p. 443). San Diego: Elsevier.

    Google Scholar 

  • Zheng, T. Q., Xu, J. L., Li, Z. K., Zhai, H. Q., & Wan, J. M. (2007). Genomic regions associated with milling quality and grain shape identified in a set of random introgression lines of rice (Oryza sativa L.). Plant Breeding, 126, 158–163.

    CAS  Google Scholar 

  • Zygier, S., Chaim, A. B., Efrati, A., Kaluzky, G., Borovsky, Y., & Paran, I. (2005). QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theoretical and Applied Genetics, 111, 437–445.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Costa.

Additional information

Source of support

Finalized research projects “FRUMED2” and “HIGHVISION”; this study is supported by the Italian Ministry of Agriculture and Forestry.

Appendices

Appendix 1

Matlab script for the extraction of n equally angularly spaced points (see Fig. 2c).

figure afigure afigure afigure a

Appendix 2

Matlab script for the extraction of the correct number of harmonics EFA harmonics equations following the procedure proposed by Crampton (1995), Menesatti et al. (2008), Costa et al. (2009a, b) and Antonucci et al. (2011) (see Fig. 2e).

figure bfigure b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, C., Antonucci, F., Pallottino, F. et al. Shape Analysis of Agricultural Products: A Review of Recent Research Advances and Potential Application to Computer Vision. Food Bioprocess Technol 4, 673–692 (2011). https://doi.org/10.1007/s11947-011-0556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0556-0

Keywords

Navigation