Skip to main content
Log in

Refractance Window Drying–a Revisit on Energy Consumption and Quality of Dried Bio-origin Products

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The postharvest losses of agricultural and horticultural crops are high as a result of the lack of postharvest handling, storage, and processing technologies in India. Over the years, drying has been an essential food preservation strategy for reducing postharvest losses and extending the shelf life of products. Traditional drying techniques exhibit a negative impact on the flavour, colour, nutritional properties, and retention of bioactive components due to the high-temperature exposure. An alternative for traditional drying methods is required to retain quality and maintain greater nutritional content in processed foods. Refractance window drying (RWD) is a thin-film drying technique that uses high heat and mass transfer rates to accelerate the moisture removal process. This technique dries the product spread over a transparent plastic film with creation of a drying “window,” ensuring lower product temperature and rapid drying by using all modes of heat transmission. When compared to traditional drying methods such as drum, hot air, freeze, and spray drying, RWD occurs at a reduced drying temperature, time, cost, and energy usage. This review paper covers recent RWD trends, stressing their impact on process and food quality attributes, as well as the contrasts between RWD and other drying technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RWD:

Refractance window drying

t wm :

Thickness of the wet material

t tpm :

Thickness of the transparent plastic material

T water :

Water temperature

T air :

Ambient air temperature

q cond :

Heat transfer by conduction

q conv :

Heat transfer by convection;

q radi :

Heat transfer by radiation

q evap :

Heat transfer by evaporation

T 1 and T 2 :

Transparent plastic film temperature below and above the surface

T 3 :

Product surface temperature

FD:

Freeze drying

DD:

Drum drying

SD:

Spray drying

CD:

Convective drying

OD:

Oven drying

IRD:

Infrared drying

HAD:

Hot air drying

MHAD:

Microwave-assisted hot air drying

MSBD:

Microwave spouted bed drying

SBD:

Spouted bed drying

UICHD:

Ultrasound and infrared-assisted conductive hydro-drying

TD:

Tray drying

IT:

Inlet air temperature

OT:

Outlet air temperature

References

  1. Shende D, Datta AK (2019) Refractance window drying of fruits and vegetables: a review. J Sci Food Agric 99:1449–1456. https://doi.org/10.1002/jsfa.9356

    Article  CAS  PubMed  Google Scholar 

  2. Kaur P, Zalpouri R, Singh M, Verma S (2020) Process optimization for dehydration of shelled peas by osmosis and three-stage convective drying for enhanced quality. J Food Process Preserv 44:e14983. https://doi.org/10.1111/jfpp.14983

    Article  CAS  Google Scholar 

  3. Deng Z, Li M, Xing T et al (2021) A literature research on the drying quality of agricultural products with using solar drying technologies. Sol Energy. https://doi.org/10.1016/j.solener.2021.07.041

    Article  Google Scholar 

  4. Kumar N, Kumar S, Sudhakar A et al (2021) Refractance windowTM-drying vs. other drying methods and effect of different process parameters on quality of foods: a comprehensive review of trends and technological developments. Future Foods 3:100024. https://doi.org/10.1016/j.fufo.2021.100024

    Article  Google Scholar 

  5. Mujumdar AS, Law CL (2010) Drying technology: trends and applications in postharvest processing. Food Bioprocess Technol 3:843–852. https://doi.org/10.1007/s11947-010-0353-1

    Article  Google Scholar 

  6. Aggarwal K, Singh M, Zalpouri R (2021) Effect of treatment and drying method (solar and convective) on physico-chemical quality of dried moringa leaves. Int J Agric Sci 17:228–233. https://doi.org/10.15740/HAS/IJAS/17.2/228-233

    Article  Google Scholar 

  7. Duarte-Correa Y, Vargas-Carmona MI, Vásquez-Restrepo A et al (2021) Native potato (Solanum phureja) powder by refractance window drying: a promising way for potato processing. J Food Process Eng 44:e13819. https://doi.org/10.1111/jfpe.13819

    Article  CAS  Google Scholar 

  8. Orphanides A, Goulas V, Gekas V (2016) Drying technologies: vehicle to high-quality herbs. Food Eng Rev 8:164–180. https://doi.org/10.1007/s12393-015-9128-9

    Article  Google Scholar 

  9. Iqbal MJ, Akbar MW, Aftab R et al (2019) Heat and mass transfer modeling for fruit drying: a review. MOJ Food Process Technol 7:69–73. https://doi.org/10.15406/mojfpt.2019.07.00222

    Article  Google Scholar 

  10. Zalpouri R, Kaur P, Kaur A, Sidhu GK (2021) Comparative analysis of optimized physiochemical parameters of dried potato flakes obtained by refractive and convective drying techniques. J Food Process Preserv 45:e15077. https://doi.org/10.1111/jfpp.15077

    Article  CAS  Google Scholar 

  11. Menon A, Stojceska V, Tassou SA (2020) A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends Food Sci Technol 100:67–76. https://doi.org/10.1016/j.tifs.2020.03.014

    Article  CAS  Google Scholar 

  12. Kumar A, Singh M, Singh G (2013) Effect of different pretreatments on the quality of mushrooms during solar drying. J Food Sci Technol 50:165–170. https://doi.org/10.1007/s13197-011-0320-5

    Article  PubMed  Google Scholar 

  13. Zarein M, Samadi SH, Ghobadian B (2015) Investigation of microwave dryer effect on energy efficiency during drying of apple slices. J Saudi Soc Agric Sci 14:41–47. https://doi.org/10.1016/j.jssas.2013.06.002

    Article  Google Scholar 

  14. Raghavi LM, Moses JA, Anandharamakrishnan C (2018) Refractance window drying of foods: a review. J Food Eng 222:267–275. https://doi.org/10.1016/j.jfoodeng.2017.11.032

    Article  Google Scholar 

  15. Waghmare R (2021) Refractance window drying: a cohort review on quality characteristics. Trends Food Sci Technol 110:652–662. https://doi.org/10.1016/j.tifs.2021.02.030

    Article  CAS  Google Scholar 

  16. Strumillo C, Jones PL, Żyłła R (2014) Energy aspects in drying. In: Mujumdar AS (ed) Handbook of industrial drying, fourth. CRC Press, Taylor and Francis Group, Boca Raton, pp 1077–1100

    Google Scholar 

  17. Zhang M, Hnin KK, Zhang M et al (2018) Emerging food drying technologies with energy-saving characteristics: a review. Drying Technol 37:1–16. https://doi.org/10.1080/07373937.2018.1510417

    Article  CAS  Google Scholar 

  18. Vega-Mercado H, Góngora-Nieto M, Barbosa-Cánovas GV (2001) Advances in dehydration of foods. J Food Eng 49:271–289. https://doi.org/10.1016/S0260-8774(00)00224-7

    Article  Google Scholar 

  19. Singham P, Birwal P (2014) Technological revolution in drying of fruit and vegetables. Int J Sci Res 3:705–711

    Google Scholar 

  20. Baeghbali V, Niakousari M, Ngadi M (2018) Introduction of a new ultrasound and infrared assisted conductive hydro-dryer. In: Paper No. CSBE18–216, CSBE/SCGAB 2018 Annual Conference University of Guelph, Guelph

  21. Chou SK, Chua KJ (2001) New hybrid drying technologies for heat sensitive foodstuffs. Food Sci Technol 12:359–369. https://doi.org/10.1016/S0924-2244(01)00102-9

    Article  Google Scholar 

  22. Maisnam D, Rasane P, Dey A et al (2017) Recent advances in conventional drying of foods. J Food Technol Preserv 1:25–34

    Google Scholar 

  23. Karthik P, Chhanwal N, Anandharamakrishnan C (2017) Drum drying. In: Anandharamakrishnan C (ed) Handbook of Drying for Dairy Products. John Wiley & Sons, Hoboken, pp 43–56

    Chapter  Google Scholar 

  24. Sosnik A, Seremeta KP (2015) Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Coll Interface Sci 223:40–54. https://doi.org/10.1016/j.cis.2015.05.003

    Article  CAS  Google Scholar 

  25. Ziaee A, Albadarin AB, Padrela L et al (2019) Spray drying of pharmaceuticals and biopharmaceuticals: critical parameters and experimental process optimization approaches. Eur J Pharm Sci 127:300–318. https://doi.org/10.1016/j.ejps.2018.10.026

    Article  CAS  PubMed  Google Scholar 

  26. Ratti C (2001) Hot air and freeze-drying of high-value foods: a review. J Food Eng 49:311–319. https://doi.org/10.1016/S0260-8774(00)00228-4

    Article  Google Scholar 

  27. Oyinloye TM, Yoon WB (2020) Effect of freeze-drying on quality and grinding process of food produce: a review. Processes 8:354. https://doi.org/10.3390/pr8030354

    Article  CAS  Google Scholar 

  28. Tirado- DF, Acevedo-Correa D, Montero-Castillo PM (2016) Dried fruit breadfruit slices by Refractive WindowTM technique. TecnoLógicas 19:103. https://doi.org/10.22430/22565337.591

    Article  Google Scholar 

  29. Srivastav PP, Verma DK, Patel AR, Al-Hilphy AR (2020) Emerging thermal and nonthermal technologies in food processing. CRC Press

    Book  Google Scholar 

  30. Verma DK, Billoria S, Mahato DK et al (2019) Effects of thermal processing on nutritional composition of green leafy vegetables: a review. In: Verma DK, Goyal MR (eds) Engineering Interventions in Foods and Plants. Taylor & Francis, Wales, pp 157–208

    Google Scholar 

  31. Magoon RE (1986) US4631837A-Method and apparatus for drying fruit pulp and the like. (Patent) Online available at https://patents.google.com/patent/US4631837A/en (Accessed on 26 April  2022)

  32. Bolland KM (2000) A new low-temperature/short-time drving process. Cereal Foods World 45:293–296

    Google Scholar 

  33. Nindo CI, Feng H, Shen GQ et al (2003) Energy utilization and microbial reduction in a new film drying system. J Food Process Preserv 27:117–136. https://doi.org/10.1111/j.1745-4549.2003.tb00506.x

    Article  Google Scholar 

  34. Abul-Fadl MM, Ghanem TH (2011) Effect of refractance-window (RW) drying method on quality criteria of produced tomato powder as compared to the convection drying method. World Appl Sci J 15:953–965

    Google Scholar 

  35. Baeghbali V, Niakousari M, Ngadi MO, Hadi Eskandari M (2019) Combined ultrasound and infrared assisted conductive hydro-drying of apple slices. Drying Technol 37:1793–1805. https://doi.org/10.1080/07373937.2018.1539745

    Article  CAS  Google Scholar 

  36. da Silva SR, de Moraes JO, Monteiro RL et al (2021) Conductive drying methods for producing high-quality restructured pineapple-starch snacks. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2021.102701

    Article  Google Scholar 

  37. Frabetti ACC, de Moraes JO, Porto AS et al (2021) Food hydrocolloids strawberry-hydrocolloids dried by continuous cast-tape drying to produce leather and powder. Food Hydrocolloids 121:107041. https://doi.org/10.1016/j.foodhyd.2021.107041

    Article  CAS  Google Scholar 

  38. Aykın-Dinçer E, Özdemir M, Topuz A (2021) Quality characteristics of bone broth powder obtained through Refractance Window™ drying. LWT Food Sci Technol 147:111526. https://doi.org/10.1016/j.lwt.2021.111526

    Article  CAS  Google Scholar 

  39. Sabarez H (2019) Refractance WindowTM Drying: a mechanistic understanding of the drying process using modelling approach. In: Reference module in food science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21439-X

  40. Aghaei Z, Jafari SM, Dehnad D et al (2018) Refractance-window as an innovative approach for the drying of saffron petals and stigma. J Food Process Eng 41:1–9. https://doi.org/10.1111/jfpe.12863

    Article  CAS  Google Scholar 

  41. Karadbhajne SV, Thakare VM, Kardile NB, Thakre SM (2019) Refractance window drying: an innovative drying technique for heat sensitive product. Int J Recent Technol Eng 8:1765–1771. https://doi.org/10.35940/ijrte.c6091.118419

    Article  Google Scholar 

  42. Hashem HA, Tayel SA, Younes OS, Mageed AOA (2019) Effect of refractance-window drying method on quality characteristics of balady menthol. J Food Dairy Sci 10:265–269. https://doi.org/10.21608/jfds.2019.58143

    Article  Google Scholar 

  43. Rostami H, Dehnad D, Jafari SM, Tavakoli HR (2018) Evaluation of physical, rheological, microbial and organoleptic properties of meat powder produced by refractance-window drying. Drying Technol 36:1076–1085. https://doi.org/10.1080/07373937.2017.1377224

    Article  CAS  Google Scholar 

  44. Zotarelli MF, Carciofi BAM, Laurindo JB (2015) Effect of process variables on the drying rate of mango pulp by refractance window. Food Res Int 69:410–417. https://doi.org/10.1016/j.foodres.2015.01.013

    Article  Google Scholar 

  45. Akinola AA, Ezeorah SN (2016) Dehydration studies of root tubers using a refractance window dryer. In: The 20th International Drying Symposium (IDS 2016), Gifu, Japan

  46. Nindo CI, Tang J (2007) Refractance window dehydration technology: a novel contact drying method. Drying Technol 25:37–48. https://doi.org/10.1080/07373930601152673

    Article  CAS  Google Scholar 

  47. Azizi D, Jafari SM, Mirzaei H, Dehnad D (2016) The influence of refractance window drying on qualitative properties of kiwifruit slices. Int J Food Eng. https://doi.org/10.1515/ijfe-2016-0201

    Article  Google Scholar 

  48. Abonyi BI, Feng H, Tang J et al (2001) Quality retention in strawberry and carrot purees dried with refractance window TM system. J Food Sci 67:1051–1056

    Article  Google Scholar 

  49. Yoha KS, Priyadarshini SR, Moses JA, Anandharamakrishnan C (2019) Refractance window drying and its applications in food processing. In: Deka SC, Seth D, Hulle NRS (eds) Technologies for value addition in food products and processes, 1st edn. Apple Academic Press Inc., Taylor & Francis Group, pp 61–72

    Chapter  Google Scholar 

  50. Azizi D, Jafari SM, Mirzaei H, Dehnad D (2017) The influence of refractance window drying on qualitative properties of kiwifruit slices. Int J Food Eng 13:20160201. https://doi.org/10.1515/ijfe-2016-0201

    Article  Google Scholar 

  51. Caparino OA, Sablani SS, Tang J et al (2013) Water sorption, glass transition, and microstructures of refractance window- and freeze-dried mango (Philippine “Carabao” Var.) powder. Drying Technol 31:1969–1978. https://doi.org/10.1080/07373937.2013.805143

    Article  CAS  Google Scholar 

  52. Nindo CI, Sun T, Wang SW et al (2003) Evaluation of drying technologies for retention of physical quality and antioxidants in asparagus (Asparagus officinalis, L.). LWT Food Sci Technol 36:507–516. https://doi.org/10.1016/S0023-6438(03)00046-X

    Article  CAS  Google Scholar 

  53. Hernández-Carrión M, Moyano M, Quintanilla-Carvajal MX (2021) Design of high-oleic palm oil nanoemulsions suitable for drying in refractance window™. J Food Process Preserv 45:1–9. https://doi.org/10.1111/jfpp.15076

    Article  CAS  Google Scholar 

  54. Aragón-Rojas S, Quintanilla-Carvajal MX, Hernández-Sánchez H et al (2019) Encapsulation of Lactobacillus fermentum K73 by refractance window drying. Sci Rep 9:1–16. https://doi.org/10.1038/s41598-019-42016-0

    Article  CAS  Google Scholar 

  55. Amer BMA (2011) Mathematical modeling of temperature and heat profiles in pilot refractance window drying system. Misr J Agric Eng 28:999–1020

    Article  Google Scholar 

  56. Smith TM (1994) Heat transfer dynamics. Tappi J 77:239–245

    Google Scholar 

  57. Pavan MA (2010) Effects of freeze drying, refractance window drying and hot-air drying on the quality parameters of açaí. University of Illinois at Urbana-Champaign, USA

    Google Scholar 

  58. van‘t Land M, Raes K (2019) Refractance window drying of fish silage–an initial investigation into the effects of physicochemical properties on drying efficiency and nutritional quality. LWT Food Sci Technol 102:71–74. https://doi.org/10.1016/j.lwt.2018.12.001

    Article  CAS  Google Scholar 

  59. Ratti C, Mujumdar AS (1995) Handbook of industrial drying. Revised and Expanded Marcel Dekker Inc, New York, pp 567–588

    Google Scholar 

  60. Zalpouri R, Kaur P, Kaur A (2020) Influence of developed refractance based drying method on physical parameter of potato flakes. Int J Chem Stud 8:2833–2838. https://doi.org/10.22271/chemi.2020.v8.i3ao.9645

    Article  Google Scholar 

  61. Zalpouri R (2018) Development and evaluation of refraction based system for dehydration of potato. Punjab Agricultural University, Ludhiana, Punjab, India

    Google Scholar 

  62. Tontul İ, Ergin F, Eroğlu E et al (2018) Physical and microbiological properties of yoghurt powder produced by refractance window drying. Int Dairy J 85:169–176. https://doi.org/10.1016/j.idairyj.2018.06.002

    Article  CAS  Google Scholar 

  63. Ortiz-Jerez MJ, Gulati T, Datta AK, Ochoa-Martínez CI (2015) Quantitative understanding of Refractance Window™ drying. Food Bioprod Process 95:237–253. https://doi.org/10.1016/j.fbp.2015.05.010

    Article  Google Scholar 

  64. Tontul I, Ergin F, Eroğlu E et al (2021) The impact of refractance window drying conditions on the physical and microbiological properties of kefir powder. Food Biosci. https://doi.org/10.1016/j.fbio.2021.101317

    Article  Google Scholar 

  65. Baeghbali V, Niakosari M, Kiani M (2010) Design, manufacture and investigating functionality of a new batch refractance window system. In: 5th International Conference on Innovations in Food and Bioprocess Technology, pp 1–7

  66. Ghanem TH (2010) Modeling of refractance window film dryer for liquids. Misr J Agric Eng 27:676–687

    Article  Google Scholar 

  67. Ssenyimba S, Kigozi J, Tumutegyereize P et al (2021) Design and evaluation of a refractance window lab-scale dryer. J Eng Des Technol. https://doi.org/10.1108/JEDT-12-2020-0523

    Article  Google Scholar 

  68. Seyfi A, Asl AR, Motevali A (2021) Comparison of the energy and pollution parameters in solar refractance window (photovoltaic-thermal), conventional refractance window, and hot air dryer. Sol Energy 229:162–173. https://doi.org/10.1016/j.solener.2021.05.094

    Article  CAS  Google Scholar 

  69. Hernández-Carrión M, Moyano-Molano M, Ricaurte L et al (2021) The effect of process variables on the physical properties and microstructure of HOPO nanoemulsion flakes obtained by refractance window. Sci Rep 11:9359. https://doi.org/10.1038/s41598-021-88381-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tang J, Ph D (1999) Evaluation of energy efficiency and quality retention for the refractance windowTM drying system. Syst Eng 1–38

  71. Baeghbali V, Niakousari M, Farahnaky A (2016) Refractance window drying of pomegranate juice: quality retention and energy efficiency. LWT Food Sci Technol 66:34–40. https://doi.org/10.1016/j.lwt.2015.10.017

    Article  CAS  Google Scholar 

  72. Baeghbali V, Niakousari M (2018) A review on mechanism, quality preservation and energy efficiency in refractance window drying: a conductive hydro-drying technique. J Nutr Food Res Technol 1:50–54. https://doi.org/10.30881/jnfrt.00011

    Article  Google Scholar 

  73. Costa C, Antonucci F, Pallottino F et al (2011) Shape analysis of agricultural products: a review of recent research advances and potential application to computer vision. Food Bioprocess Technol 4:673–692. https://doi.org/10.1007/s11947-011-0556-0

    Article  Google Scholar 

  74. Pathare PB, Opara UL, Al-Said FAJ (2013) Colour measurement and analysis in fresh and processed foods: a review. Food Bioprocess Technol 6:36–60. https://doi.org/10.1007/s11947-012-0867-9

    Article  CAS  Google Scholar 

  75. Bal LM, Satya S, Naik SN et al (2016) Recent advances in sustainable drying of agricultural produce: a review. Renew Sustain Energy Rev 14:1185–1210. https://doi.org/10.1016/j.apenergy.2018.10.044

    Article  Google Scholar 

  76. Chauhan OP, Singh A, Singh A et al (2011) Effects of osmotic agents on colour, textural, structural, thermal, and sensory properties of apple slices. Int J Food Prop 14:1037–1048

    Article  Google Scholar 

  77. Ahmed J, Shivhare US (2001) Thermal kinetics of color change, rheology, and storage characteristics of garlic puree/paste. J Food Sci 66:754–757. https://doi.org/10.1111/j.1365-2621.2001.tb04633.x

    Article  CAS  Google Scholar 

  78. Shin S, Bhowmik SR (1995) Thermal kinetics of color changes in pea puree. J Food Eng 24:77–86. https://doi.org/10.1016/0260-8774(94)P1609-2

    Article  Google Scholar 

  79. Giuliani A, Cerretani L, Cichelli A (2016) Colors: properties and determination of natural pigments. In: Caballero B, Finglas PM, Toldrá FBT-E of F and H (eds). Academic Press, Oxford, pp 273–283. https://doi.org/10.1016/B978-0-12-384947-2.00189-6

  80. Zalpouri R, Kaur P, Sain M (2020) Refractive window drying–a better approach to preserve the visual appearance of dried products. Pantnagar J Res 18:90–94

    Google Scholar 

  81. Topuz A, Feng H, Kushad M (2009) The effect of drying method and storage on color characteristics of paprika. LWT Food Sci Technol 42:1667–1673. https://doi.org/10.1016/j.lwt.2009.05.014

    Article  CAS  Google Scholar 

  82. Caparino OA, Tang J, Nindo CI et al (2012) Effect of drying methods on the physical properties and microstructures of mango (Philippine “Carabao” var.) powder. J Food Eng 111:135–148. https://doi.org/10.1016/j.jfoodeng.2012.01.010

    Article  Google Scholar 

  83. Nayak B, de Berrios J, Powers JR et al (2011) Colored potatoes (Solanum tuberosum L.) dried for antioxidant-rich value-added foods. J Food Process Preserv 35:571–580. https://doi.org/10.1111/j.1745-4549.2010.00502.x

    Article  CAS  Google Scholar 

  84. Puente-Díaz L, Spolmann O, Nocetti D et al (2020) Effects of infrared-assisted refractance window™ drying on the drying kinetics, microstructure, and color of physalis fruit purée. Foods 9:343. https://doi.org/10.3390/foods9030343

    Article  PubMed Central  Google Scholar 

  85. Tontul I, Eroğlu E, Topuz A (2018) Convective and refractance window drying of cornelian cherry pulp: effect on physicochemical properties. J Food Process Eng 41:1–8. https://doi.org/10.1111/jfpe.12917

    Article  CAS  Google Scholar 

  86. Hernández-Santos B, Martínez-Sánchez CE, Torruco-Uco JG et al (2016) Evaluation of physical and chemical properties of carrots dried by refractance window drying. Drying Technol 34:1414–1422. https://doi.org/10.1080/07373937.2015.1118705

    Article  CAS  Google Scholar 

  87. Szczesniak AS (1990) Texture: is it still an overlooked food attribute? Food Technol (USA) 44:86–95

    Google Scholar 

  88. Kilcasr D, Lewis DF (1990) Structure and texture–their importance in food quality. Nutr Bull 15:103–113. https://doi.org/10.1111/j.1467-3010.1990.tb00073.x

    Article  Google Scholar 

  89. Martynenko A, Janaszek MA (2014) Texture changes during drying of apple slices. Drying Technol 32:567–577. https://doi.org/10.1080/07373937.2013.845573

    Article  CAS  Google Scholar 

  90. Guiné RPF (2018) The drying of foods and its effect on the physical-chemical, sensorial and nutritional properties. Int J Food Eng 4:93–100. https://doi.org/10.18178/ijfe.4.2.93-100

    Article  Google Scholar 

  91. Jafari SM, Azizi D, Mirzaei H, Dehnad D (2016) Comparing quality characteristics of oven-dried and refractance window-dried kiwifruits. J Food Process Preserv 40:362–372. https://doi.org/10.1111/jfpp.12613

    Article  CAS  Google Scholar 

  92. Shende D, Kour M, Datta AK (2020) Evaluation of sensory and physico-chemical properties of Langra variety mango leather. J Food Meas Charact 14:3227–3237. https://doi.org/10.1007/s11694-020-00558-2

    Article  Google Scholar 

  93. Jalgaonkar K, Mahawar MK, Vishwakarma RK et al (2018) Optimization of process condition for preparation of sapota bar using refractance window drying method. Drying Technol 38:269–278. https://doi.org/10.1080/07373937.2018.1482314

    Article  CAS  Google Scholar 

  94. Tontul I, Topuz A (2017) Effects of different drying methods on the physicochemical properties of pomegranate leather (pestil). LWT Food Sci Technol 80:294–303. https://doi.org/10.1016/j.lwt.2017.02.035

    Article  CAS  Google Scholar 

  95. Santos PHS, Silva MA (2008) Retention of vitamin C in drying processes of fruits and vegetables–a review. Drying Technol 26:1421–1437. https://doi.org/10.1080/07373930802458911

    Article  CAS  Google Scholar 

  96. Adom KK, Dzogbefia VP, Ellis WO (1997) Combined effect of drying time and slice thickness on the solar drying of okra. J Sci Food Agric 73:315–320

    Article  CAS  Google Scholar 

  97. Rajoriya D, Shewale SR, Bhavya ML, Hebbar HU (2020) Far infrared assisted refractance window drying of apple slices: comparative study on flavour, nutrient retention and drying characteristics. Innov Food Sci Emerg Technol 66:102530. https://doi.org/10.1016/j.ifset.2020.102530

    Article  CAS  Google Scholar 

  98. Kaya A, Aydin O, Kolayli S (2010) Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food Bioprod Process 88:165–173. https://doi.org/10.1016/j.fbp.2008.12.001

    Article  CAS  Google Scholar 

  99. Baeghbali V, Ngadi M, Niakousari M (2020) Effects of ultrasound and infrared assisted conductive hydro-drying, freeze-drying and oven drying on physicochemical properties of okra slices. Innov Food Sci Emerg Technol 63:102313. https://doi.org/10.1016/j.ifset.2020.102313

    Article  CAS  Google Scholar 

  100. Rajoriya D, Bhavya ML, Hebbar HU (2021) Impact of process parameters on drying behaviour, mass transfer and quality profile of refractance window dried banana puree. LWT Food Sci Technol 145:111330. https://doi.org/10.1016/j.lwt.2021.111330

    Article  CAS  Google Scholar 

  101. Nansereko S, Muyonga J, Byaruhanga YB (2021) Optimization of drying conditions for jackfruit pulp using refractance window drying technology. Food Sci Nutr. https://doi.org/10.1002/fsn3.2694

    Article  Google Scholar 

  102. Nemzer B, Vargas L, Xia X et al (2018) Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chem 262:242–250. https://doi.org/10.1016/j.foodchem.2018.04.047

    Article  CAS  PubMed  Google Scholar 

  103. Raponi F, Moscetti R, Monarca D et al (2017) Monitoring and optimization of the process of drying fruits and vegetables using computer vision: a review. Sustainability (Switzerland). https://doi.org/10.3390/su9112009

    Article  Google Scholar 

  104. Verma DK, Thakur M, Srivastav PP et al (2020) Effects of drying technology on physiochemical and nutritional quality of fruits and vegetables. In: Srivastav PP, Verma DK, Patel AR, Al-Hilphy AR (eds) Emerging Thermal and Nonthermal Technologies in Food Processing. Apple Academic Press, pp 69–116. https://doi.org/10.1201/9780429297335-3

    Chapter  Google Scholar 

  105. Suvarnakuta P, Chaweerungrat C, Devahastin S (2011) Effects of drying methods on assay and antioxidant activity of xanthones in mangosteen rind. Food Chem 125:240–247. https://doi.org/10.1016/j.foodchem.2010.09.015

    Article  CAS  Google Scholar 

  106. Shende D, Datta AK (2020) Optimization study for refractance window drying process of Langra variety mango. J Food Sci Technol 57:683–692. https://doi.org/10.1007/s13197-019-04101-0

    Article  CAS  PubMed  Google Scholar 

  107. Puente L, Vega-Gálvez A, Ah-Hen KS et al (2020) Refractance window drying of goldenberry (Physalis peruviana L.) pulp: a comparison of quality characteristics with respect to other drying techniques. LWT Food Sci Technol 131:109772. https://doi.org/10.1016/j.lwt.2020.109772

    Article  CAS  Google Scholar 

  108. Padhi S, Dwivedi M (2022) Physico-chemical, structural, functional and powder flow properties of unripe green banana flour after the application of refractance window drying. Future Foods 5:100101. https://doi.org/10.1016/J.FUFO.2021.100101

    Article  CAS  Google Scholar 

  109. Simsek M, Süfer Ö (2021) Effect of pretreatments on refractance window drying, color kinetics and bioactive properties of white sweet cherries (Prunus avium L. stark gold). J Food Process Preserv 45:e15895. https://doi.org/10.1111/jfpp.15895

    Article  CAS  Google Scholar 

  110. Maskan M (2001) Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. J Food Eng 48:177–182. https://doi.org/10.1016/S0260-8774(00)00155-2

    Article  Google Scholar 

  111. Berk Z (2009) Chapter 22–dehydration. In: Berk ZBT-FPE and T (ed) Food science and technology. Academic Press, San Diego, pp 459–510

    Google Scholar 

  112. Puttongsiri T, Choosakul N, Sakulwilaingam D (2012) Moisture content and physical properties of instant mashed potato. Int Conf Nutr Food Sci 39:92–95

    Google Scholar 

  113. Bobić Z, Bauman I, Ćurić D (2002) Rehydration ratio of fluid bed-dried vegetables. Sadhana Acad Proc Eng Sci 27:365–374. https://doi.org/10.1007/BF02703657

    Article  Google Scholar 

  114. Chaudhary V, Kumar V (2020) Study on drying and rehydration characteristics of tray dried beetroot (Beta Vulgaris L.) and functional properties of its powder. Chem Sci Rev Lett 9:98–108. https://doi.org/10.37273/chesci.CS082050061

    Article  CAS  Google Scholar 

  115. Canuto HMP, Afonso MRA, da Costa JMC (2014) Hygroscopic behavior of freeze-dried papaya pulp powder with maltodextrin. Acta Sci Technol 36:179–185. https://doi.org/10.4025/actascitechnol.v36i1.17499

    Article  CAS  Google Scholar 

  116. Ribeiro LC, da Costa JMC, Afonso MRA (2016) Hygroscopic behavior of lyophilized acerola pulp powder. Rev Bras de Eng Agricola e Ambient 20:269–274. https://doi.org/10.1590/1807-1929/agriambi.v20n3p269-274

    Article  Google Scholar 

  117. Tonon RV, Brabet C, Hubinger MD (2008) Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. J Food Eng 88:411–418. https://doi.org/10.1016/j.jfoodeng.2008.02.029

    Article  Google Scholar 

  118. Rajoriya D, Shewale SR, Hebbar HU (2019) Refractance window drying of apple slices: mass transfer phenomena and quality parameters. Food Bioprocess Technol 12:1646–1658. https://doi.org/10.1007/s11947-019-02334-7

    Article  CAS  Google Scholar 

  119. Athmaselvi KA, Kumar C, Balasubramanian M, Roy I (2014) Thermal, structural, and physical properties of freeze dried tropical fruit powder. J Food Process 2014:1–10. https://doi.org/10.1155/2014/524705

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruchika Zalpouri.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalpouri, R., Singh, M., Kaur, P. et al. Refractance Window Drying–a Revisit on Energy Consumption and Quality of Dried Bio-origin Products. Food Eng Rev 14, 257–270 (2022). https://doi.org/10.1007/s12393-022-09313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-022-09313-3

Keywords

Navigation