Skip to main content
Log in

A New Look at Models of the Combined Effect of Temperature, pH, Water Activity, or Other Factors on Microbial Growth Rate

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

A popular approach to mathematical modeling of the combined effect of temperature, pH, water activity, oxygen tension, and the concentration of salts, sugars, alcohol, and/or antimicrobials on microbial growth rate is known as the gamma hypothesis. It is based on the notion that the growth rate, however defined, can be expressed as a multiplication product of algebraic terms each constructed from the individual factors’ cardinal parameters, i.e., their minimal, optimal, and maximal levels. These three alone, however, need not define a unique mathematical relationship, an issue that can be resolved by the terms’ redefinition or amendment. Offered are simulated examples where the roles of temperature, pH, or oxygen tension, which have an optimal level, are represented by a term that for the same three cardinal parameters can produce either curve having different maxima or different curves having the same maximum. Where a growth factor’s effect can be considered as rising or falling monotonically, as in water activity or inhibitory salt concentration, it can be represented by a single exponential or stretched exponential term. The resulting models can be used to simulate static and dynamic growth patterns to reveal how different cardinal parameter combinations may affect the growth kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Akkermans S, Logist F, Van Impe JF (2018) An interaction model for the combined effect of temperature, pH and water activity on the growth rate of E. coli K12 Food Res Intnl 106:1123–1131

  2. Akkermans S, Noriega Fernandez E, Logist F, Van Impe JF (2017) Introducing a novel interaction model structure for the combined effect of temperature and pH on the microbial growth rate. Innl J Food Microbiol 240:85–96

    Article  Google Scholar 

  3. Akkermans S, Van Impe JF (2018) Mechanistic modelling of the inhibitory effect of pH on microbial growth. Food Microbiol 72:214–219

    Article  CAS  PubMed  Google Scholar 

  4. Anastasiadi M, Lambert RJW (2017) Modelling the effect of combined antimicrobials: a base model for multiple hurdles Intl J. Food Microbiol 252:10–17

    Article  CAS  Google Scholar 

  5. Arroyo-López FN, Orlić S, Querol A, Barrio L (2009) Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid Intl J Food Microbiol 131:120–127

  6. Augustin JC, Carlier V (2000) Modelling the growth rate of Listeria monocytogenes with a multiplicative type model including interactions between environmental factors. Intl J Food Microbiol 56:53–70

    Article  CAS  Google Scholar 

  7. Baka M, Ev Van Derlinden, Boons K, Mertens L, Van Impe JF (2013) Impact of pH on the cardinal temperatures of E. coli K12: evaluation of the gamma hypothesis. Food Control 29:328–335

    Article  Google Scholar 

  8. Bildas E, Lambert RJW (2008) Comparing the antimicrobial effectiveness of NaCl and KCl with a view to salt/sodium replacement. Intl J Food Microbiol 124:98–124

    Article  Google Scholar 

  9. Biesta-Peters EG, Reij MW, Gorris LGM, Zwietering MH (2010) Comparing nonsynergistic gamma models with interaction models to predict growth of emetic Bacillus cereus when using combinations of pH and individual undissociated acids as growth-limiting factors. Appl Env. Microbio l76:5791–5801

  10. Carlin F, CAlbagnac C, Rida A, Guinebretière MH, Couvert O, Nguyen-the C, (2013) Variation of cardinal growth parameters and growth limits according to phylogenetic affiliation in the Bacillus cereus Group. Consequences for risk assessment. Food Microbiol 33:69–76

    CAS  PubMed  Google Scholar 

  11. Carrasco E, del Rosal S, Racero C, García-Gimeno RM (2012) A review on growth/no growth Salmonella models. Food Res Intnl 47:90–99

    Article  Google Scholar 

  12. Cole MB, Jones MV, Holyoak C (1990) The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes J Appl Micorbiol 69:63–72

  13. Corradini MG, Amézquita A, Normand MD, Peleg M (2006) Modeling and predicting non-isothermal microbial growth using general-purpose software. Intnl J Food Microbiol 106:223–328

    Article  Google Scholar 

  14. Corradini MG, Peleg M (2007) Shelf-life estimation from accelerated storage data. Trends Food Sci Technol 18:37–47

    Article  CAS  Google Scholar 

  15. Cuppers HGAM, Oomes S, Brul S (1997) A model for the combined effects of temperature and salt concentration on growth rate of food spoilage molds Appl Env. Microbio 63:3764–3769

    CAS  Google Scholar 

  16. Davy KR, Daughry BJ (1995) Validation of a model for predicting the combined effect of three environmental factors on both exponential and lag phase of bacterial growth: temperature, salt concentration and pH. Food Res Intnl 28:233–237

    Article  Google Scholar 

  17. Ellouze M, Buss Da Silva N, Rouzeau-Szynalski K, Coisne L, Cantergiani F, Baranyi J (2021) Modeling Bacillus cereus growth and cereulide formation in cereal-, dairy-, meat-, vegetable-based food and culture medium Frontiers Microbiol 12:(Article 639546)

  18. Emborg J, Dalgaard P (2008) Modelling the effect of temperature, carbon dioxide, water activity and pH on growth and histamine formation by Morganella psychrotolerans. Intl J Food Microbiol 128:226–233

    Article  CAS  Google Scholar 

  19. Gibson AM, Bratchel N, Roberts TA (1988) Predicting microbial growth: growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature. Intl J Food Microbiol 6:155–178

    Article  CAS  Google Scholar 

  20. Heitzer A, Kohler HPE, Reichert P, Hamer G (1999) Utility of phenomenological models for describing temperature dependence of bacterial growth. Appl Env Microbiol 57:2656–2665

    Article  Google Scholar 

  21. Hutchings N, Smyth B, Cunningham E, Mangwandi C, (2021) Development of a mathematical model to predict the growth of Pseudomonas spp. in, and film permeability requirements of, high oxygen modified atmosphere packaging for red meat. J Food Eng 289:(110251)

  22. Koutsoumanis K, Stamatiou A, Skandamis P, Nychas GJE (2006) Development of a microbial model for the combined effect of temperature and pH on spoilage of ground meat, and validation of them under dynamic temperature conditions. Appl Env. Microbiol 72:124–134

    Article  CAS  Google Scholar 

  23. Kubaczka J, Che´ne C, (1999) Combined effects of pH and sugar on growth rate of Zygosaccharomyces rouxii, a bakery product spoilage yeast. Appl Env Microbiol 65:4921–4925

    Article  Google Scholar 

  24. Lambert RJW (2010) A new model for the effect of pH on microbial growth: an extension of the gamma hypothesis. J Appl Microbiol 110:61–68

    Article  PubMed  Google Scholar 

  25. Lambert RJW, Bidlas E (2007) A study of the gamma hypothesis: predictive modelling of the growth and inhibition of Enterobacter sakazakii. Intnl J Food Microbiol 115:204–213

    Article  CAS  Google Scholar 

  26. Lambert RJW, Bidlas E (2007) An investigation of the gamma hypothesis: a predictive modelling study of the effect of combined inhibitors (salt, pH and weak acids) on the growth of Aeromonas hydrophila. Intnl J Food Microbiol 115:12–28

    Article  CAS  Google Scholar 

  27. Lambert RJW, Pearson J (2000) Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J Appl Microbiol 88:784–790

    Article  CAS  PubMed  Google Scholar 

  28. Lanciotti R, Sinigaglia M, Gardini F, Vannini L, Guerzoni ME (2001) Growth/no growth interfaces of Bacillus cereus, Staphylococcus aureus and Salmonella enteritidis in model systems based on water activity, pH, temperature and ethanol concentration. Food Microbiol 18:659–668

    Article  CAS  Google Scholar 

  29. Le Marc Y, Huchet V, Bourgeois VM, Guyonnet JP, Mafart P, Thuault D (2002) Modelling the growth kinetics of Listeria as a function of temperature, pH and organic acid concentration. Intnl J Food Microbiol 73:219–237

    Article  Google Scholar 

  30. Leroy F, De Vuyst L (1999) Temperature and pH conditions that prevail during fermentation of sausages are optimal for production of the antilisterial bacteriocin sakacin K. Appl Env. Microbio 65:974–981

    Article  CAS  Google Scholar 

  31. Martinez-Rios V, Ggogka E, Dalgaard P (2019) New term to quantify the effect of temperature on pHmin-values used in cardinal parameter growth models for Listeria monocytogenes. Frontier Microbiol 10:(1510)

  32. McMeekin TA, Chandler RE, Doe PE, Garland CD, Olley J, Putros S, Ratkowski DA (1987) Model for combined effect of temperature and salt concentration/water activity on the growth rate of Staphylococcus xylosus J Appl Bacteriol 62:543–550Membre JM,

  33. Neumeyer K, Toss T, McMeekin TA (1997) Development of a predictive model to describe the effects of temperature and water activity on the growth of spoilage pseudomonads. Int J Food Microbiol 38:45–54

    Article  CAS  PubMed  Google Scholar 

  34. Nunes Silva B, Cadaveza V, Teixeirab JA, Ellouzec M, Gonzales-Barrona U (2020) Cardinal parameter meta-regression models describing Listeria monocytogenes growth in broth. Food Res Intnl 136:(109476)

  35. Nyhan L, Begley M, Mutel A, Qu Q, Johnson N, Callanan M (2018) Predicting the combinatorial effects of water activity, pH and organic acids on Listeria growth in media and complex food matrices. Food Microbiol 74:75–85

    Article  CAS  PubMed  Google Scholar 

  36. Peleg M (2019) Expanded discrete and continuous Bĕlehrádek/Ratkowski models of microbial growth rates under oscillating and extreme storage temperatures. Food Eng Rev 11:219–234

    Article  Google Scholar 

  37. Peleg M (2019) Beta distributions for particle size having a finite range and a predetermined mode, mean or median. Powder Technol. 356:790–794

    Article  CAS  Google Scholar 

  38. Peleg M, Corradini MG (2011) Microbial growth curves - what the models tell us and what they cannot. Crit Rev Food Sci Nutr 51:917–945

    Article  PubMed  Google Scholar 

  39. Peleg M, Corradini MG, Normand MD (2007) The logistic (Verhulst) model for sigmoid microbial growth curves revisited. Food Res Intrnl 40:808–818

    Article  Google Scholar 

  40. Pernina A, Guillierc L, Dubois-Brissonne F (2019) Inhibitory activity of phenolic acids against Listeria monocytogenes: deciphering the mechanisms of action using three different models. Food Micorbiol 80:18–24

    Article  Google Scholar 

  41. Pinon A, Zwietering M, Perrier L, Membre JM, Leporq B, Mettler E, Thuault D, Coroller L, Stahl V, Vialette M (2004) Development and validation of experimental protocols for use of cardinal models for prediction of microorganism growth in food products Appl Env Microbiol 70:1081–1087

    CAS  Google Scholar 

  42. Rosso L, Lobry JR, Bajard S, Flandrois JP (1995) Convenient model to describe the combined effects of temperature and pH on microbial growth Appl Env Microbiol 61:610–616

    CAS  Google Scholar 

  43. Rosso L, Robinson TP (2001) A cardinal model to describe the effect of water activity on the growth of moulds Intnl J. Food Microbiol 63:265–23

    Article  CAS  Google Scholar 

  44. Sautour M, Dantigny P, Divies C, Bensoussan M (2001) A temperature-type model for describing the relationship between fungal growth and water activity Intnl J. Food Microbiol 67:63–69

    Article  CAS  Google Scholar 

  45. te Giffe MC, Zwietering MH (1999) Validation of predictive models describing the growth of Listeria monocytogenes. Intnl J Food Microbiol 46:135–149

    Article  Google Scholar 

  46. Tirloni E, Stella S, Bernardi C, Rosshaug PS (2021) A new predictive model for the description of the growth of Salmonella spp. in Italian fresh ricotta cheese LWT 143:(111163)

  47. Tsoularis A (2001) Analysis of logistic growth models. Res Lett Inf Math Sci 2:23–46

    Google Scholar 

  48. Van Derlinden E, Mertens L, Van Impe JF (2013) The impact of experiment design on the parameter estimation of cardinal parameter models in predictive microbiology. Food Control 29:300–308

    Article  Google Scholar 

  49. Van Derlinden E, Van Impe JF (2012) Modeling growth rates as a function of temperature: model performance evaluation with focus on the suboptimal temperature range Intnl J. Food Microbiol 158:73–78

    Article  Google Scholar 

  50. Wijtzes T, De Wit JC, Huis JHJ (1995) Van’t Veld TK, Van’t Riet, Zwietering MH. Modelling bacterial growth of Lactobacillus curvatus as a function of acidity and temperature Appl Env Microbiol 61:2533–2539

    CAS  Google Scholar 

  51. Zwietering MH, Jongenburger I, Rombouts FM (1990) van’t Riet K. Modeling of the bacterial growth curve Appl Env Microbiol 56:1875–1881

    Article  CAS  Google Scholar 

  52. Zwietering MH, Wijtzes T, De Wit JC, van’t Riet K, (1992) A decision support system for prediction of the microbial spoilage in foods. J Food Protect 55:973–979

    Article  Google Scholar 

  53. Zwietering MH, De Wit JC, Notermans S (1996) Application of predictive microbiology to estimate the number of Bacillus cereus in pasteurised milk at the point of consumption. Intnl J Food Microbiol 30:55–70

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micha Peleg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The momentary γ[T(t)] and γ[pH(t)] expressed as a function of the corresponding cardinal parameters*

figure a

*Notice that in static growth, i.e., at constant temperature and/or pH, T(t) = T and pH(t) = pH, these two formulas produce plots of the kind shown in Figs. 12 and 13, that is peaking at Topt and pHopt, respectively, with a peak height γ(Topt) = γ(pHopt) = 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peleg, M. A New Look at Models of the Combined Effect of Temperature, pH, Water Activity, or Other Factors on Microbial Growth Rate. Food Eng Rev 14, 31–44 (2022). https://doi.org/10.1007/s12393-021-09292-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-021-09292-x

Keywords

Navigation