Skip to main content
Log in

Food Preservation by Pulsed Electric Fields: An Engineering Perspective

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Along the years, processing technologies for food preservation have been in constant development in order to meet current consumers’ claims. In this way, researchers have been continuously working to understand the effects of different novel emerging technologies tested on foods to ensure microbiological stability as well as high quality attributes. Among these novel technologies, pulsed electric fields (PEF) have shown to be a potential non-thermal treatment capable of preserving liquid foods with fresh-like characteristics. As a result, in the last decade, great technological advances have been accomplished regarding to PEF processing, such as improvement on the chamber designs, optimization of the process as well as achievement of high-quality-processed foods. This paper reviews the latest developments related to PEF technology for food preservation, the current designs of PEF treatment chambers, and modeling concepts applied for process optimization. In addition, some scaling-up considerations are included for future industrial implementation of PEF processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abram F, Smelt JPPM, Ros R, Wouters PC (2003) Modelling and optimization of inactivation of Lactobacillus plantarum by pulsed electric field treatment. J Appl Microbiol 94:571–579

    Article  CAS  Google Scholar 

  2. Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2010) High intensity pulsed electric fields processing parameters affecting polyphenoloxidase activity of strawberry juice. J Food Sci 75(7):C641–C646

    Article  Google Scholar 

  3. Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2010) Impact of high-intensity pulsed electric field variables affecting peroxidase and lipoxygenase activities in watermelon juice. LWT-Food Sci Tech 43:897–902

    Article  Google Scholar 

  4. Alkhafaji SR, Farid M (2007) An investigation on pulsed electric fields technology using new treatment chamber design. Innov Food Sci Emerg Technol 8(2):205–212

    Article  Google Scholar 

  5. Allen M, Soike K (1996) Sterilization by electrohydraulic treatment. Science 154:155–157

    Article  Google Scholar 

  6. Álvarez I, Pagán R, Condón S, Raso J (2003) The influence of process parameters for the inactivation of Listeria monocytogenes by pulsed electric fields. Int J Food Microbiol 87(1/2):87–95

    Article  Google Scholar 

  7. Angersbach A, Heinz V, Knorr D (1999) Electrophysiological model of intact and processed plant tissues: cell disintegration criteria. Biotechnol Prog 15(4):753–762

    Article  CAS  Google Scholar 

  8. Barbosa-Cánovas GV, Gongora-Nieto MM, Pothankamury UR, Swanson BG (1999) Preservation of foods with pulsed electric fields. Academic Press, London, pp 1–9, 76–107, 108–155

  9. Barbosa-Cánovas GV, Altunakar B (2006) Pulsed electric field processing of foods: an overview. In: Raso J, Heinz V (eds) Pulsed electric field technology for the food industry. Springer, USA

    Google Scholar 

  10. Bazhal M, Ngadi MO, Raghavan VGS (2006) Kinetics of Escherichia coli in liquid whole egg using combined PEF and thermal treatments. LWT-Food Sci Technol 39(4):420–426

    Article  CAS  Google Scholar 

  11. Bendicho S, Barbosa-Cánovas GV, Martín-Belloso O (2002) Milk processing by high intensity pulsed electric fields. Trends Food Sci Tech 213:195–204

    Article  Google Scholar 

  12. Bendicho S, Estela C, Giner J, Barbosa-Cánovas GV, Martín O (2002) Effects of high intensity pulsed electric field and thermal treatment on a lipase from Pseudomonas fluorescens. J Dairy Sci 85:19–27

    Article  CAS  Google Scholar 

  13. Bendicho S, Espachs A, Arántegui J, Martín O (2002) Effect of high intensity pulsed electric fields and heat treatments on vitamins of milk. J Dairy Res 69:113–123

    Article  CAS  Google Scholar 

  14. Bendicho S, Barbosa-Cánovas GV, Martín-Belloso O (2003) Reduction of protease in milk by continuous flow high-intensity pulsed electric field treatments. J Dairy Sci 86:697–703

    Article  CAS  Google Scholar 

  15. Bendicho S, Marselles-Fontanet R, Barbosa-Cánovas GV, Martín-Belloso O (2005) High intensity pulsed electric fields and heat treatments applied to a protease from Bacillus subtilis. A comparison study of multiple systems. J Food Eng 69:317–323

    Article  Google Scholar 

  16. Braakman L (2003) Breaktrhough in pasteurization: pulsed electric fields. Food Eng Ingr 28(3):34–38

    Google Scholar 

  17. Castro AJ, Swanson BG, Barbosa-Cánovas GV, Zhang QH (2003) Pulsed electric field modification of milk alkaline phosphatase activity. In: Barbosa-Cánovas GV, Zhang QH (eds) Pulsed electric fields in food processing. Fundamental aspects and applications. Technomic Publishing Co., Inc., Lancaster, PA

    Google Scholar 

  18. Cserhalmi ZS, Sass-Kiss A, Toth-Markus M, Lechner N (2006) Study of pulsed electric field treated citrus juices. Innov Food Sci Emerg 7(1):49–54

    Article  CAS  Google Scholar 

  19. Cole MB, Davies KW, Munro G, Holyoak CD, Kilsby DC (1993) A vitalistic model to describe the thermal inactivation of Listeria monocytogenes. J Ind Microbiol 12:232–239

    Article  Google Scholar 

  20. Cortés C, Torregrosa F, Esteve MJ, Frigola A (2006) Carotenoid profile modification during refrigerated storage in untreated and pasteurized orange juice and orange juice treated with high-intensity pulsed electric fields. J Agr Food Chem 54(17):6247–6254

    Article  Google Scholar 

  21. Cortés C, Torregrosa F, Esteve MJ, Frigola A (2006) Changes on colour and carotenoids contents during high-intensity pulsed electric field treatment in orange juices. Food Chem Toxicol 44:1932–1939

    Article  Google Scholar 

  22. Cortés C, Esteve MJ, Frigola A (2008) Color of orange juice treated by high intensity pulsed electric fields during refrigerate storage and comparison with pasteurized juice. Food Control 19:151–158

    Article  Google Scholar 

  23. Doevenspeck H (1984) Elektroimpulsverfahren und Vorrichtung zur Behandlung von Stoffen. Patent No. DE 0 148 380 A3, Germany

  24. Edebo L, Slin I (1968) The effect of the pressure shock wave and some electrical quantities in the microbicidal effect of transient electric arcs in aqueous systems. J Gen Microbiol 50:253–259

    CAS  Google Scholar 

  25. Elez-Martínez P, Martín-Belloso O (2005) Food safety aspects of pulsed electric fields. In: Sun DW (ed) Emerging technologies for food processing. Academic Press, Boston

    Google Scholar 

  26. Elez-Martínez P, Aguiló-Aguayo I, Martín-Belloso O (2006) Inactivation of orange juice peroxidase by high-intensity pulsed electric fields as influenced by processing parameters. J Food Sci Agric 86:71–81

    Article  Google Scholar 

  27. Elez-Martínez P, Martín-Belloso O (2007) Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chem 102:201–209

    Article  Google Scholar 

  28. Elez-Martínez P, Martín-Belloso O (2007) Impact of pulsed electric fields on food enzymes and shelf-life. In: Lelieveld HLM, Notermans S, de Haan SWH (eds) Food preservation by pulsed electric fields. CRC-Press, New York

    Google Scholar 

  29. Esplugas S, Pagan R, Barbosa-Cánovas GV, Swanson BG (2001) Engineering aspects of the continuous treatment of fluid foods by pulsed electric fields. Pulsed electric fields in food processing. Technomic Publishing Company Press, Lancaster, PA

    Google Scholar 

  30. Evrendilek GA, Jin ZT, Ruhlman KT, Qui X, Zhang QH, Ritcher ER (2000) Microbial safety and shelf-life of apple juice and apple cider processed by bench and pilot scale PEF systems. Innov Food Sci Emerg Technol 1:77–86

    Article  Google Scholar 

  31. Evrendilek GA, Zhang QH (2005) Effects of pulse polarity and pulse delaying time on pulsed electric fields-induced pasteurization of E. coli 0157:H7. J Food Eng 68:271–276

    Article  Google Scholar 

  32. Fernández-Molina JJ, Bermúdez-Aguirre D, Altunakar B, Swanson GG, Barbosa-Cánovas GV (2006) Inactivation of Listeria innocua and Pseudomonas fluorescens by pulsed electric fields in skim milk: energy requirements. J Food Eng 29:561–573

    Article  Google Scholar 

  33. Fiala A, Wouters PC, van den Bosch E, Creyghton YLM (2001) Coupled electrical-fluid model of pulsed electric field treatment in a model food system. Innov Food Sci Emerg 2:229–238

    Article  Google Scholar 

  34. Fox MB (2007) Microbial inactivation kinetics of pulsed electric field treatment. In: Lelieved HLM, Nontermans S, de Haan SWH (eds) Food preservation by pulsed electric field. CRC Press, New York, pp 127–134

    Google Scholar 

  35. Fox MB, Esveld DC, Mastwijk H, Boom RM (2008) Inactivation of L. platarum in a PEF microreactor. The effects of pulse width and temperature on the inactivation. Innov Food Sci Emerg 9:101–108

    Article  CAS  Google Scholar 

  36. Gerlach D, Alleborn N, Baars A, Delgado A, Moritz J, Knorr D (2008) Numerical simulations of pulsed electric fields for food preservation: a review. Innov Food Sci Emerg 9:408–417

    Article  Google Scholar 

  37. Giner J, Gimeno V, Barbosa-Cánovas GV, Martín O (2001) Effects of pulsed electric field processing on apple and pear polyphenoloxidase. Food Sci Technol Int 7(4):339–345

    CAS  Google Scholar 

  38. Giner J, Gimeno V, Espachs A, Elez P, Barbosa-Cánovas GV, Martín-Belloso O (2000) Inhibition of peach polyphenoloxidase by pulsed electric fields. In: Proceedings of European conference on emerging food science and nutrition, Tampere, Finland, pp 109

  39. Giner J, Ortega M, Mesegué M, Gimeno V, Barbosa-Cánovas GV, Martín-Belloso O (2002) Inactivation of peach polyphenoloxidase by exposure to pulsed electric fields. J Food Sci 67(4):1467–1472

    Article  CAS  Google Scholar 

  40. Giner J, Gimeno V, Palomes M, Barbosa-Cánovas GV, Martín O (2003) Lessening polygaracturonase activity in a commercial enzyme preparation by exposure to pulsed electric fields. Eur Food Res Technol 217:43–48

    Article  CAS  Google Scholar 

  41. Giner J, Bailo E, Gimeno V, Martín-Belloso O (2005) Models in Bayesian framework for inactivation of pectinesterase in a commercial enzyme formulation by pulsed electric fields. Eur Food Res Technol 221:255–264

    Article  CAS  Google Scholar 

  42. Giner-Seguí J, Bailo-Ballarín E, Goristein S, Martín-Belloso O (2006) New kinetic approach to evolution of polygaracturonase (EC 3.2.1.15) activity in a commercial enzyme preparation under pulsed electric fields. J Food Sci 71(6):E262–E269

    Article  Google Scholar 

  43. Giner-Seguí J, Elez-Martínez P, Martín-Belloso O (2009) Modeling within the Bayesian framework, the inactivation of pectinesterase in gazpacho by pulsed electric fields. J Food Eng 95:446–452

    Article  Google Scholar 

  44. Gómez N, Garcia D, Alvarez I, Condon S, Raso J (2005) Modeling inactivation of Listeria monocytogenes by pulsed electric fields in media of different pH. Int J Food Microbiol 103(2):199–206

    Article  Google Scholar 

  45. Góngora-Nieto MM, Sepúlveda DR, Pedrow P, Barbosa-Cánovas GV, Swanson BG (2002) Food processing by pulsed electric fields: treatment delivery, inactivation level and regulatory aspects. LWT-Food Sci Technol 35:375–388

    Google Scholar 

  46. Góngora-Nieto MM, Sepúlveda DR, Pedrow P, Swanson BG, Barbosa-Cánovas GV (2004) Use of circuit analysis simulations in pulsed electric fields processing. J Food Eng 61:413–420

    Article  Google Scholar 

  47. Heinz V, Phillips ST, Zenker M, Knorr D (1999) Inactivation of pulsed electric fields under close to isothermic conditions. Food Biotechnol 13:155–168

    Article  Google Scholar 

  48. Heinz V, Alvarez I, Angersbach A, Knorr D (2002) Preservation of liquid foods by high intensity pulsed electric fields—basic concepts for process design. Trends Food Sci Technol 12:103–111

    Article  Google Scholar 

  49. Hoogland H, de Haan W (2007) Economic aspects of pulsed electric field treatment of food. In: Lelieve S, Nontermans S, de Haan SWH (eds) Food preservation by pulsed electric fields. CRC Press, New York

    Google Scholar 

  50. Huang K, Wang J (2009) Designs of pulsed electric fields treatment chambers for liquid foods pasteurization process: a review. J Food Eng 95:227–239

    Article  Google Scholar 

  51. Hülsheger H, Potel J, Niemann EG (1981) Killing of bacteria with electric pulses of high field strength. Radiat Environ Biophys 20:53–65

    Article  Google Scholar 

  52. Jaeger H, Meneses N, Knorr D (2009) Impact of PEF treatment inhomogeneity such as electric field distribution, flow characteristics and temperature effects on the inactivation of E. coli and milk alkaline phosphatase. Innov Food Sci Technol 10:470–480

    Article  CAS  Google Scholar 

  53. Jaeger H, Meneses N, Jeldrik M, Knorr D (2010) Model for the differentiation of temperature and electric field effects during thermal assisted PEF processing. J Food Eng 100(1):109–118

    Article  Google Scholar 

  54. Laberge M (1998) Intrinsic protein electric fields: basic noncovalent interactions and relationship to protein-induced Stark effects. Biochim Biophys Acta 1386:305–350

    Article  CAS  Google Scholar 

  55. Li J, Wei X, Xu X, Wang Y (2009) Bacteria inactivation by PEF with coaxial treatment chamber and tube-plate treatment chamber. In: Proceedings of the 9th international conference on properties and applications of dielectric materials. 19–23 July, Harbin, China

  56. Lindgren M, Aronsson K, Galt S, Ohlsson T (2002) Simulation of the temperature increase in pulsed electric field (PEF) continuous flow treatment chambers. Innov Food Sci Emerg 3:233–245

    Article  Google Scholar 

  57. Mañas P, Pagán R (2005) A review: microbial inactivation by new technologies of food preservation. J Appl Microbiol 98:1387–1399

    Article  Google Scholar 

  58. Martín-Belloso O, Elez-Martínez P (2005) Enzymatic inactivation by pulsed electric fields. In: Sun DW (ed) Emerging technologies for food processing. Elsevier, London

    Google Scholar 

  59. Marsellés-Fontanet À, Puig A, Olmos P, Mínguez-Sanz S, Martín Belloso O (2009) Optimising the inactivation of grape juice spoilage organism by pulsed electric fields. Int J Food Microbiol 130:159–165

    Article  Google Scholar 

  60. Min S, Evrendilek GA, Zhang HQ (2007) Pulsed electric fields: processing system, microbial and enzyme inhibition, and shelf-life extension of foods. IEEE T Plasma Sci 35(1):59–73

    Article  CAS  Google Scholar 

  61. Monfort S, Gayán E, Saldaña G, Puértolas E, Condón S, Raso J, Álvarez I (2010) Inactivation of Salmonella Typhimurium and Staphylococcus aureus by pulsed electric fields in liquid whole egg. Innov Food Sci Emerg 11:306–313

    Article  CAS  Google Scholar 

  62. Morales-de la Peña M, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2010) Impact of high intensity pulsed electric field on antioxidant properties and quality parameters of a fruit juice-soymilk beverage in chilled storage. LWT-Food Sci Technol 43(6):872–881

    Article  Google Scholar 

  63. Morshuis PHF, Van Den Bosch HFM, De Haan SWH, Ferreira JA (2002) Treatment apparatus methods for preserving pumpable food products in a pulsed electric field. US Patent 6,393,975

  64. Mosqueda-Melgar J, Raybaudi-Massilia RM, Martín-Belloso O (2008) Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innov Food Sci Emerg 9:328–340

    Article  CAS  Google Scholar 

  65. Musa DM, Ramaswamy HS (1997) Ultra high pressure pasteurization of milk: kinetics of microbial destruction and changes in physico-chemical characteristics. LWT Food Sci Technol 30(6):551–557

    Google Scholar 

  66. Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, New York

    Google Scholar 

  67. Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O (2008) Changes of health-related compounds throughout cold storage of tomato juice stabilized by thermal or high intensity pulsed electric field treatments. Innov Food Sci Emerg 9:272–279

    Article  CAS  Google Scholar 

  68. Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O (2008) Impact of high-intensity pulsed electric fields variables on vitamin C, anthocyanins and antioxidant capacity of strawberry juice. LWT Food Sci Technol 42(1):93–100

    Article  Google Scholar 

  69. Odriozola-Serrano I, Soliva-Fortuny R, Gimeno-Añó V, Martín-Belloso O (2008) Modeling changes in health-related compounds of tomato juice treated by high-intensity pulsed electric fields. J Food Eng 89:210–216

    Article  Google Scholar 

  70. Ortegas-Rivas E (2007) Processing effects for safety and quality in some non-predominant food technologies. Crit Rev Food Sci 47:161–173

    Article  Google Scholar 

  71. Peleg M (1995) A model of microbial survival after exposure to pulsed electric fields. J Food Sci Agr 67:93–99

    Article  CAS  Google Scholar 

  72. Pizzichemi M (2009) Pulsed electric field inactivation of microbial cells: the use of ceramic layers to increase the efficiency of treatment. Nucl Phys B 197:374–377

    Article  CAS  Google Scholar 

  73. Raso J, Alvarez I, Condón S, Trepat FJS (2000) Predicting inactivation of Salmonella senftenberg by pulsed electric field. Innov Food Sci Emerg 1(1):21–29

    Article  Google Scholar 

  74. Raso J, Barbosa-Cánovas GV (2003) Nonthermal preservation of foods using combined processing techniques. Crit Rev Food Sci 43(3):265–285

    Article  Google Scholar 

  75. Rodrigo D, Ruíz P, Barbosa-Cánovas GV, Martínez A, Rodrigo M (2003) Kinetic model for the inactivation of Lactobacillus plantarum by pulsed electric fields. Int J Food Microbiol 81(3):223–229

    Article  CAS  Google Scholar 

  76. Saldaña G, Puértolas E, Condón S, Álvarez I, Raso J (2010) Modeling inactivation kinetics and occurrence of sublethal injury of a pulsed electric field-resistant strain of Escherichia coli and Salmonella Typhimurium in media of different pH. Innov Food Sci Emerg 11:290–298

    Article  Google Scholar 

  77. Saldaña G, Puértolas E, Condón S, Álvarez I, Raso J (2010) Inactivation kinetics of pulsed electric field-resistant strains of Listeria monocytogenes and Staphylococcus aureus in media of different pH. Food Microbiol 27(4):550–558

    Article  Google Scholar 

  78. Sampedro F, Rivas A, Rodrigo D, Martínez A, Rodrigo M (2006) Effect of temperature and substrate on PEF inactivation of Lactobacillus plantarum in an orange-juice-milk beverage. Eur Food Res Technol 223:30–34

    Article  CAS  Google Scholar 

  79. Sampedro F, Geveke DJ, Fan X, Zhang HQ (2009) Effect of PEF, HHP and thermal treatment on PME inactivation and volatile compounds concentration of an orange juice-milk based beverage. Innov Food Sci Emerg 10:463–469

    Article  CAS  Google Scholar 

  80. San Martín MF, Sépulveda DR, Altunakar MM, Góngora-Nieto BG, Swanson GV, Barbosa-Cánovas GV (2007) Evaluation of selected mathematical models to predict the inactivation of Listeria innocua by pulsed electric fields. LWT Food Sci Technol 40:1271–1279

    Article  Google Scholar 

  81. Saulis G, Wouters PC (2007) Probable mechanisms of microorganism inactivation by pulsed electric fields. In: Lelieveld HLM, Notermans S, Haan SWH (eds) Food preservation by pulsed electric fields. CRC Press, New York

  82. Sepúlveda DR, Góngora-Nieto MM, San-Martín MF, Barbosa-Cánovas GV (2005) Influence of treatment temperature on the inactivation of Listeria innocua by pulsed electric fields. LWT-Food Sci Technol 38(2):167–172

    Google Scholar 

  83. Sobrino-López A, Martín-Belloso O (2008) Enhancing the lethal effect of high intensity pulsed electric field in milk by antimicrobial compounds as combined hurdles. J Dairy Sci 91:1759–1768

    Article  Google Scholar 

  84. Sobrino-López A, Martín-Belloso O (2009) Review: potential of high-intensity pulsed electric fields technology for milk processing. Food Eng Rev 2(1):17–27

    Article  Google Scholar 

  85. Soliva-Fortuny R, Balasa A, Knorr D, Martín-Belloso O (2009) Effects of pulsed electric field son bioactive compounds in foods: a review. Trends Food Sic Technol 20(11–12):544–556

    Article  CAS  Google Scholar 

  86. Toepfl S, Heinz V, Knorr D (2005) Overview of pulsed electric field processing for food. In: Da-Wen S (ed) Emerging technologies for food processing. Elsevier, London

  87. Toepfl S, Heinz V, Knorr D (2006) Applications of pulsed electric fields technology for the food industry. In: Raso J, Heinz V (Eds) Pulsed electric fields for the food industry. Springer, USA, pp 197–221

  88. Toepfl S, Mathys A, Heinz V, Knorr D (2006) Review: potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Rev Int 22:405–423

    Article  CAS  Google Scholar 

  89. Toepfl S, Heinz V, Knorr D (2007) History of pulsed electric field treatment. In: Lelieves HLM, Notermans S, Haan SWH (eds) Food preservation by pulsed electric fields. CRC Press, New York

  90. Torregrosa F, Esteve MJ, Frigola A, Cortés C (2006) Ascorbic acid stability during refrigerated storage of orange-carrot juice treated by high pulsed electric field and comparison with pasteurized juice. J Food Eng 73(4):339–345

    Article  CAS  Google Scholar 

  91. van Boekel MAJS (2002) On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int J Food Microbiol 74:139–159

    Article  Google Scholar 

  92. Wan J, Converntry J, Swiergon P, Sanguansri P, Versteeg C (2009) Advances in innovative processing technologies form microbial inactivation and enhancement of food safety—pulsed electric field and low-temperature plasma. Trends Food Sci Technol 20:414–424

    Article  CAS  Google Scholar 

  93. Wong DWS (1995) Tailoring enzyme: structures and functions. In: Wong DWS (ed) Food enzymes: structure and mechanisms. Chapman & Hall, New York, pp 17–36

    Google Scholar 

  94. Wouters PC, Alvarez I, Raso J (2001) Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends Food Sci Technol 12:112–121

    Article  CAS  Google Scholar 

  95. Yang RJ, Li SQ, Zhang QH (2004) Effects of pulsed electric field on the activity and structure of pepsin. J Agr Food Chem 52(24):7400–7406

    Article  CAS  Google Scholar 

  96. Zhang Y, Liao X, Ni Y, Wu J, Hu X, Wang Z, Chen F (2007) Kinetic analysis of the degradation and its color change of cyanidin-3-glucoside exposed to pulsed electric field. Eur Food Res Technol 224(5):597–603

    Article  CAS  Google Scholar 

  97. Zhong K, Hu X, Zhao G, Chen F, Liao X (2005) Inactivation and conformational change of horseradish peroxidase induced by pulsed electric field. Food Chem Food 92:473–479

    Article  CAS  Google Scholar 

  98. Zulueta A, Esteve MJ, Frasquet I, Frígola A (2007) Fatty acid profile changes during orange juice-milk beverage processing by high-pulsed electric field. Eur J Lipid Sci Technol 109(1):25–31

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thanks the EC funded integrate project NovelQ FP6-Food-CT-2005-015710. Morales-de la Peña, M. thanks the Consejo Nacional de Ciencia y Tecnologia (CONACYT) (Mexico) for the predoctoral grant. ICREA Academia Award is also acknowledged by Olga Martín-Belloso.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Martín-Belloso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales-de la Peña, M., Elez-Martínez, P. & Martín-Belloso, O. Food Preservation by Pulsed Electric Fields: An Engineering Perspective. Food Eng Rev 3, 94–107 (2011). https://doi.org/10.1007/s12393-011-9035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-011-9035-7

Keywords

Navigation