Skip to main content
Log in

Characterization of BRASSINOSTEROID F-BOX Proteins BRFPs that Regulate BRASSINOSTEROID-INSENSITIVE 2 Kinase

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

BRASSINOSTEROIDS (BRs) play important roles in regulating plant growth and development. The Arabidopsis GSK3-like kinase BIN2, a major negative regulator of BR signaling, plays diverse roles in plant growth and developmental processes. In a previous study, based on the relationship between BIN2 and its substrate, we reported the possibility that BIN2 protein stability is controlled by BRASSINOSTEROID F-BOX Protein 1 and 2, BRF1 and BRF2, (BRF1/2, renamed BRFP1/2). The aim of the study was to characterize the functions of the F-box proteins BRFP1 and BRFP2, and to confirm their relationship with the BIN2 proteins and the role of the BR signaling for plant growth and development. BRFP1-overexpressing (BRFP1-FLAG) plants displayed better growth compared to the wild-type Col-0 plants in contrast to brfp1/2 mutants. BRFP1 plants were sensitive to BL, the most active BR, as opposed to the brfp1/2 mutants. We confirmed that BRFP1 overexpression suppressed the dwarf BIN2-HA phenotype by reducing BIN2 protein levels through BRFP1–BIN2 interactions in vivo. These results suggest the possibility that the stability of BIN2 is regulated by BRFP1. Altogether, results of our finding propose that the F-box proteins BRFP1/2 are involved in BR signaling for regulating plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

All the generated or analyzed data during this study are included in this published article and its supplementary information files.

References

  • Anne P, Azzopardi M, Gissot L, Beaubiat S, Hématy K, Palauqui JC (2015) OCTOPUS negatively regulates BIN2 to control phloem differentiation in Arabidopsis thaliana. Curr Biol 25(19):2584–2590

    Article  CAS  PubMed  Google Scholar 

  • Anwar A, Liu Y, Dong R, Bai L, Yu X, Li Y (2018) The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biol Res 51(1):46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R (2007) NCBI GEO: mining tens of millions of expression profiles–database and tools update. Nucleic Acids Res 35:D760–D765

    Article  CAS  PubMed  Google Scholar 

  • Baute J, Polyn S, De Block J, Blomme J, Van Lijsebettens M, Inzé D (2017) F-box protein FBX92 affects leaf size in Arabidopsis thaliana. Plant Cell Physiol 58(5):962–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE (2002) Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3 beta-like kinase. Plant Physiol 130(3):1506–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17(10):594–605

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD (2008) The molecular intersection of brassinosteroid regulated growth and flowering in Arabidopsis. Proc Natl Acad Sci USA 105(21):7345–7346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coates JC, Laplaze L, Haseloff J (2006) Armadillo-related proteins promote lateral root development in Arabidopsis. Proc Natl Acad Sci USA 103(5):1621–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui X, Xu X, He Y, Du X, Zhu J (2016) Overexpression of an F-box protein gene disrupts cotyledon vein patterning in Arabidopsis. Plant Physiol Biochem 102:43–52

    Article  CAS  PubMed  Google Scholar 

  • Cusack SA, Wang P, Lotreck SG, Moore BM, Meng F, Conner JK, Krysan PJ, Lehti-Shiu MD, Shiu SH (2021) Predictive models of genetic redundancy in Arabidopsis thaliana. Mol Biol Evol msab111

  • Dhaka N, Krishnan K, Kandpal M, Vashisht I, Pal M, Sharma MK, Sharma R (2020) Transcriptional trajectories of anther development provide candidates for engineering male fertility in sorghum. Sci Rep 10(1):897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong L, Wang L, Zhang Y, Zhang Y, Deng X, Xue Y (2006) An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. Plant Mol Biol 60(4):599–615

    Article  CAS  PubMed  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19(6):1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra RD (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA 101(17):6803–6808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomi K, Sasaki A, Itoh H, Ueguchi-tanaka M, Ashikari M, Kitano H, Matsuoka M (2004) GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J 37(4):626–634

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Carranza ZH, Zhang X, Peters JL, Boltz V, Szecsi J, Bendahmane M, Roberts JA (2017) HAWAIIAN SKIRT controls size and floral organ number by modulating CUC1 and CUC2 expression. PLoS ONE 12(9):e0185106

    Article  PubMed  PubMed Central  Google Scholar 

  • Gräfe K, Shanmugarajah K, Zobel T, Weidtkamp-Peters S, Kleinschrodt D, Smits SHJ, Schmitt L (2019) Cloning and expression of selected ABC transporters from the Arabidopsis thaliana ABCG family in Pichia pastoris. PLoS One 14(1):e0211156

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo H, Li L, Aluru M, Aluru S, Yin Y (2013) Mechanisms and networks for brassinosteroid regulated gene expression. Curr Opin Plant Biol 16(5):545–553

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Wang H, Qiao S, Leng L, Wang X (2016) Histone deacetylase HDA6 enhances brassinosteroid signaling by inhibiting the BIN2 kinase. Proc Natl Acad Sci USA 113(37):10418–10423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmon FG, Kay SA (2003) The F-box protein AFR is a positive regulator of phytochrome A-mediated light signaling. Curr Biol 13(23):2091–2096

    Article  CAS  PubMed  Google Scholar 

  • Houbaert A, Zhang C, Tiwari M, Wang K, de Marcos SA, Savatin DV, Urs MJ, Zhiponova MK, Gudesblat GE, Vanhoutte I, Eeckhout D, Boeren S, Karimi M, Betti C, Jacobs T, Fenoll C, Mena M, de Vries S, De Jaeger G, Russinova E (2018) POLAR-guided signalling complex assembly and localization drive asymmetric cell division. Nature 563(7732):574–578

    Article  CAS  PubMed  Google Scholar 

  • Jeong YJ (2020) Putative E3 ligases as candidates controlling BRASSINOSTEROID INSENSITIVE 2 (BIN2) kinase in Arabidopsis. Plant Biotechnol Rep 14:703–712

    Article  Google Scholar 

  • Jeong YJ, Claudia C, Kwon SI, Choe S (2015) Analysis of anti-BZR1 antibody reveals the roles BES1 in maintaining the BZR1 levels in Arabidopsis. J Plant Biol 58(2):87–95

    Article  CAS  Google Scholar 

  • Jeong YJ, Park S, Suh SJ, Kwon SI, Cha R, Kim YE, Choe S (2016) Overexpression of the 3’ half of the PHYB partially suppresses dwarfism in the brassinosteroid-insensitive bri1-5 mutant. J Plant Biol 59(1):83–91

    Article  CAS  Google Scholar 

  • Kim OK, Jung JH, Park CM (2010) An Arabidopsis F-box protein regulates tapetum degeneration and pollen maturation during anther development. Planta 232(2):353–366

    Article  CAS  PubMed  Google Scholar 

  • Kim YY, Jung KW, Jeung JU, Shin JS (2012) A novel F-box protein represses endothecial secondary wall thickening for anther dehiscence in Arabidopsis thaliana. J Plant Physiol 169(2):212–216

    Article  CAS  PubMed  Google Scholar 

  • Klepikova AV, Kasianov AS, Gerasimov ES, Logacheva MD, Penin AA (2016) A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J 88(6):1058–1070

    Article  CAS  PubMed  Google Scholar 

  • Marrocco K, Zhou Y, Bury E, Dieterle M, Funk M, Genschik P, Krenz M, Stolpe T, Kretsch T (2006) Functional analysis of EID1, an F-box protein involved in phytochrome A-dependent light signal transduction. Plant J 45(3):423–438

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto D, Yamane H, Abe K, Tao R (2012) Identification of a Skp1-like protein interacting with SFB, the pollen S determinant of the gametophytic self-incompatibility in Prunus. Plant Physiol 159(3):1252–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132(2):453–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni W, Xie D, Hobbie L, Feng B, Zhao D, Akkara J, Ma H (2004) Regulation of flower development in Arabidopsis by SCF complexes. Plant Physiol 134(4):1574–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng P, Yan Z, Zhu Y, Li J (2008) Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 through proteasome-mediated protein degradation. Mol Plant 1(2):338–346

    Article  CAS  PubMed  Google Scholar 

  • Qiao H, Wang H, Zhao L, Zhou J, Huang J, Zhang Y, Xue Y (2004) The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in antirrhinum. Plant Cell 16(3):582–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samach A, Klenz JE, Kohalmi SE, Risseeuw E, Haughn GW, Crosby WL (1999) The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J 20(3):433–445

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446(7136):640–645

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Hirano K, Hasegawa Y, Kitano H, Matsuoka M (2008) Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant. Plant Cell 20(9):2437–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waese J, Fan J, Pasha A, Yu H, Fucile G, Shi R, Cumming M, Kelley LA, Sternberg MJ, Krishnakumar V, Ferlanti E, Miller J, Town C, Stuerzlinger W, Provart NJ (2017) ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology. Plant Cell 29(8):1806–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An ‘electronic fluorescent pictograph’ browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2(8):e718

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao W, Jang J (2000) F-Box proteins in Arabidopsis. Trends Plant Sci 5(11):454–457

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Yao R, Chen L, Li S, Gu M, Nan F, Xie D (2018) Dynamic perception of jasmonates by the F-Box protein COI1. Mol Plant 11(10):1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Zhu W, Li L, Zhang S, Yin Y, Ma H, Wang X (2010) Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc Natl Acad Sci USA 107:6100–6105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youn JH, Kim TW (2015) Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. Mol Plant 8(4):552–565

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Gonzalez-Carranza ZH, Zhang S, Miao Y, Roberts JA (2019) F-box proteins in plants. Annu Plant Rev Online 2:1–21

    Google Scholar 

  • Zhu JY, Sae-Seaw J, Wang ZY (2013) Brassinosteroid signalling. Development 140(8):1615–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JY, Li Y, Cao DM, Yang H, Oh E, Bi Y, Zhu S, Wang ZY (2017) The F-box protein KIB1 mediates brassinosteroid-induced inactivation and degradation of GSK3-like kinases in Arabidopsis. Mol Cell 66(5):648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(1):2621–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was done with financial assistance of Prof. Sunghwa Choe and grant from the National Research Foundation of Korea (NRF; grant No. 2013R1A1A2059445 to Y.J.J).

Author information

Authors and Affiliations

Authors

Contributions

YJJ designed and performed the experiments. YJJ, JSL and DGK analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Yu Jeong Jeong.

Ethics declarations

Conflict of interest

All the authors agreed on the contents of the paper and the authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

Comparison of protein expression levels of BRFP1-FLAG/BIN2-HA and BIN2-HA plants. (A) Western blot analysis result using anti-HA. Total protein extracts from the 1-week-old seedling of the transgenic plant shown in Fig. 1(E), grown in ½ MS media without MG132. (B) The intensities of protein bands in (A) were quantified with reference to actin control bands using ImageJ analysis program. (C) Western blot analysis result using anti-Flag antibody. Total protein extracts from the 1-week-old seedling of the transgenic plant shown in Fig. 1(E), grown in ½ MS media.Supplementary file1 (TIF 54 KB)

Fig. S2

Measurement of hypocotyl length in 6-day-old BRFP1-overexpressing and brfp1/2 seedlings. Error bars indicate SD (n ≥20). Asterisks indicate P < 0.001 (*) in Student’s t-test analysis.Supplementary file2 (TIF 10 KB)

Fig. S3

Expression profiles of Arabidopsis BRFP1 (AT5G62970) obtained from the Klepikova Arabidopsis Atlas and Arabidopsis Embryo of eFP browser database. Data were collected a high resolution map of the Arabidopsis thaliana developmental (A) and embryo (B) expression profile based on publicly available transcriptome databases at eFP browser (microarray).Supplementary file3 (TIF 371 KB)

Fig. S4

Expression profiles of Arabidopsis BRFP2 (AT5G56690) obtained from the Klepikova Arabidopsis Atlas and Arabidopsis Embryo of eFP browser database. Data were collected a high resolution map of the Arabidopsis thaliana developmental (A) and embryo (B) expression profile based on publicly available transcriptome databases at eFP browser (microarray).Supplementary file4 (TIF 306 KB)

Fig. S5

Expression profiles of Arabidopsis BRFP1 (AT5G62970) obtained from organs and developmental stages of the TraVA. Data were collected a high resolution map of the Arabidopsis thaliana organs and developmental stages expression profile based on publicly available RNA-seq databases at TRAVA (RNA-seq). Read counts for BRFP1 among all samples.Supplementary file5 (TIF 1048 KB)

Fig. S6

Expression profiles of Arabidopsis BRFP2 (AT5G56690) obtained from organs and developmental stages of TraVA. Data were collected a high resolution map of the Arabidopsis thaliana organs and developmental stages expression profile based on publicly available RNA-seq databases at TRAVA (RNA-seq). Read counts for BRFP2 among all samples.Supplementary file6 (TIF 426 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, Y.J., Lee, J.S. & Kim, DG. Characterization of BRASSINOSTEROID F-BOX Proteins BRFPs that Regulate BRASSINOSTEROID-INSENSITIVE 2 Kinase. J. Plant Biol. 65, 53–63 (2022). https://doi.org/10.1007/s12374-021-09335-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-021-09335-0

Keywords

Navigation