Skip to main content
Log in

Exogenous Spermidine Improves Chilling Tolerance in Sweet Corn Seedlings by Regulation on Abscisic Acid, ROS and Ca2+ Pathways

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Chilling stress is a major abiotic constraint that affects sweet corn seedling establishment. Spermidine (Spd) is known to participate in the cold stress response in plants, nonetheless, the molecular mechanisms are largely unknown. The present study reported that exogenous Spd not only stimulated seedling growth but also enhanced photosynthetic attributes under chilling stress. Further analysis revealed that Spd application resulted in depressed abscisic acid (ABA) content and affected the expression of ABA-responsive genes. The augmented antioxidant enzymes activities, coupled with declined reactive oxygen species (ROS) content, were observed in response to Spd treatment under chilling stress. Moreover, Spd up-regulated the transcription levels of some Ca2+ transport-related genes. We propose that Spd contributes to cold tolerance in sweet corn seedlings via the regulation of genes involved in the ROS, ABA pathways and Ca2+ transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agudelo-Romero P, Ali K, Choi YH et al (2014) Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv Trincadeira. Plant Physiol Biochem 74:141–155

    CAS  PubMed  Google Scholar 

  • Alcázar R, Marco F, Cuevas JC et al (2006) Involvement of polyamines in plant response to abiotic stress. Biotech Lett 28:1867–1876

    Google Scholar 

  • Alcázar R, Altabella T, Marco F et al (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231(6):1237–1249

    PubMed  Google Scholar 

  • Benavides MP, Groppa MD, Recalde L et al (2018) Effects of polyamines on cadmium- and copper-mediated alterations in wheat (Triticum aestivum L.) and sunflower (Helianthus annuus L.) seedling membrane fluidity. Arch Biochem Biophys 654:27–39

    CAS  PubMed  Google Scholar 

  • Cai SY, Zhang Y, Xu YP et al (2017) Hsfa1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. J Pineal Res 62:2

    Google Scholar 

  • Chen D, Shao Q, Yin L et al (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 2019:9

    Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451

    CAS  PubMed  Google Scholar 

  • Cuevas JC, Lopez-Cobollo R, Alcazar R et al (2008) Putrescine is involved in arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148(2):1094–1105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diao QN, Song YJ, Shi DM et al (2016) Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum mill.) seedling. J Zhejiang Univ-Sci B 17(12):916–930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diao Q, Song Y, Shi D et al (2017) Interaction of polyamines, abscisic acid, nitric oxide, and hydrogen peroxide under chilling stress in tomato (Lycopersicon esculentum mill.) seedlings. Front Plant Sci 2017:8

    Google Scholar 

  • Flores HE, Galston AW (1982) Analysis of polyamines in higher-plants by high-performance liquid-chromatography. Plant Physiol 69(3):701–706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freitas VS, Miranda RDS, Costa JH et al (2018) Ethylene triggers salt tolerance in maize genotypes by modulating polyamine catabolism enzymes associated with H2O2 production. Environ Exp Bot 145:75–86

    CAS  Google Scholar 

  • Galon Y, Finkler A, Fromm H (2010) Calcium-regulated transcription in plants. Mol Plant 3(4):653–669

    CAS  PubMed  Google Scholar 

  • Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan YJ, Hu J, Wang XJ et al (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ-Sci B 10(6):427–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guye MG, Vigh L, Wilson JM (1986) Polyamine titer in relation to chill-sensitivity in Phaseolus sp. J Exp Bot 37:1036–1043

    CAS  Google Scholar 

  • Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero JRA (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA 95(19):11140–11145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handa AK, Fatima T, Mattoo AK (2018) Polyamines: Bio-molecules with diverse functions in plant and human health and disease. Front Chem 2018:6

    Google Scholar 

  • He LX, Nada K, Kasukabe Y, Tachibana S (2002) Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S -adenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.). Plant Cell Physiol 43:196–206

    CAS  PubMed  Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17(8):2142–2155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Lin C, He F et al (2017) Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H2O2 and relevant gene expression. BMC Plant Biol 2017:17

    Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    CAS  PubMed  Google Scholar 

  • Kim DW, Watanabe K, Murayama C et al (2014) Polyamine oxidase5 regulates Arabidopsis growth through thermospermine oxidase activity. Plant Physiol 165(4):1575–1590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kou S, Chen L, Tu W et al (2018) The arginine decarboxylase gene ADC1, associated to the putrescine pathway, plays an important role in potato cold-acclimated freezing tolerance as revealed by transcriptome and metabolome analyses. Plant J 96(6):1283–1298

    CAS  PubMed  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007) Advances in polyamine research in 2007. J Plant Res 120:345–350

    CAS  PubMed  Google Scholar 

  • Laohavisit A, Davies JM (2009) Multifunctional annexins. Plant Sci 177(6):532–539

    CAS  Google Scholar 

  • Lee TM, Lur HS, Chu C (1997) Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings II. Modulation of free polyamine levels. Plant Sci 126:1–10

    CAS  Google Scholar 

  • Li Z-G, Gong M (2005) Improvement of measurement method for superoxide anion radical in plant. Acta Bot Yunnanica 27(2):211–216

    CAS  Google Scholar 

  • Li L, Gu W, Li J et al (2018) Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. Plant Physiol Biochem 129:35–55

    CAS  PubMed  Google Scholar 

  • Liu C, Atanasov KE, Arafaty N et al (2020) Putrescine elicits ROS-dependent activation of the salicylic acid pathway in Arabidopsis thaliana. Plant Cell Environ. https://doi.org/10.1111/pce.13874

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo J, Liu M, Zhang C et al (2017) Transgenic centipedegrass (Eremochloa ophiuroides Munro Hack.) overexpressing S-adenosylmethionine decarboxylase (SAMDC) gene for improved cold tolerance through involvement of H2O2 and no signaling. Front Plant Sci 2017:8

    Google Scholar 

  • Matsuda H (1984) Some properties of the arginine decarboxylase in vicia-faba leaves. Plant Cell Physiol 25(4):523–530

    CAS  Google Scholar 

  • Mega R, Meguro-Maoka A, Endo A et al (2015) Sustained low abscisic acid levels increase seedling vigor under cold stress in rice (Oryza sativa L.). Sci Rep 2015:5

    Google Scholar 

  • Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci 5(5):175

    PubMed  PubMed Central  Google Scholar 

  • Mittler R, Blumwald E (2015) The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27(1):64–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeau P, Delaney S, Chouinard L (1987) Effects of cold hardening on the regulation of polyamine levels in wheat (Triticum aestivum L.) and alfalfa (Medicago sativa L.). Plant Physiol 84:73–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naseri S, Gholami M, Baninasab B (2019) Changes in polyamines during bud dormancy in almond cultivars differing in their flowering date. Sci Horticult 2019:258

    Google Scholar 

  • Reis RS, Vale ED, Heringer AS et al (2016) Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. J Proteomics 130:170–179

    CAS  PubMed  Google Scholar 

  • Renaut J, Lutts S, Hoffmann L et al (2004) Responses of poplar to chilling temperatures: proteomic and physiological aspects. Plant Biol 6(1):81–90

    CAS  PubMed  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2011) Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J Plant Physiol 168(4):317–328

    CAS  PubMed  Google Scholar 

  • Sheteiwy M, Shen H, Xu J et al (2017) Seed polyamines metabolism induced by seed priming with spermidine and 5-aminolevulinic acid for chilling tolerance improvement in rice (Oryza sativa L.) seedlings. Environ Exp Bot 137:58–72

    CAS  Google Scholar 

  • Slesak I, Libik M, Karpinska B et al (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 54(1):39–50

    CAS  PubMed  Google Scholar 

  • Su GX, An ZF, Zhang WH et al (2005) Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls. J Plant Physiol 162:1297–1303

    CAS  PubMed  Google Scholar 

  • Torrigiani P, Serafinifracassini D, Bagni N (1987) Polyamine biosynthesis and effect of dicyclohexylamine during the cell-cycle of helianthus-tuberosus tuber. Plant Physiol 84(1):148–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay RK, Fatima T, Handa AK et al (2020) Polyamines and their biosynthesis/catabolism genes are differentially modulated in response to heat versus cold stress in tomato leaves (Solanum lycopersicum L.). Cells 9:8

    Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants—protective role of exogenous polyamines. Plant Sci 151(1):59–66

    CAS  Google Scholar 

  • Winfield MO, Lu C, Wilson ID et al (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8(7):749–771

    CAS  PubMed  Google Scholar 

  • Yoon SO, Lee YS, Lee SH et al (2000) Polyamine synthesis in plants: Isolation and characterization of spermidine synthase from soybean (Glycine max) axes. BBA-Gen Subj 1475(1):17–26

    CAS  Google Scholar 

  • Zeng YH, Zahng YP, Xiang J et al (2016) Effects of chilling tolerance induced by spermidinepretreatment on antioxidative activity, endogenous hormones and ultrastructure of indica-japonica hybrid rice seedlings. J Integr Agric 15(2):295–308

    CAS  Google Scholar 

  • Zepeda-Jazo I, Maria Velarde-Buendia A, Enriquez-Figueroa R et al (2011) Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol 157(4):2167–2180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Chen Q, Wang S et al (2014) Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice 2014:7

    Google Scholar 

  • Zhou WJ, Leul M (1999) Uniconazole-induced tolerance of rape plants to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regul 27(2):99–104

    CAS  Google Scholar 

  • Zhuo C, Liang L, Zhao Y et al (2018) A cold responsive ethylene responsive factor from medicago falcata confers cold tolerance by up-regulation of polyamine turnover, antioxidant protection, and proline accumulation. Plant, Cell Environ 41(9):2021–2032

    CAS  Google Scholar 

  • Zocchi G, Hanson JB (1983) Calcium-transport and atpase activity in a microsomal vesicle fraction from corn roots. Plant Cell Environ 6(3):203–209

    CAS  Google Scholar 

  • Zong W, Tang N, Yang J et al (2016) Feedback regulation of aba signaling and biosynthesis by a bzip transcription factor targets drought-resistance-related genes. Plant Physiol 171(4):2810–2825

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Startup Foundation for Introducing Talent of Shaoxing University Yuanpei College (9999910302).

Author information

Authors and Affiliations

Authors

Contributions

SYC initiated the project, designed the experiments, analyzed the data and drafted the manuscript. GFW, HX and JXL contributed to the antioxidant enzymes and HPLC analysis. JL and YS performed the experiments of qRT-PCR analyses. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Shuyu Cai.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethics approval

The article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Wang, G., Xu, H. et al. Exogenous Spermidine Improves Chilling Tolerance in Sweet Corn Seedlings by Regulation on Abscisic Acid, ROS and Ca2+ Pathways. J. Plant Biol. 64, 487–499 (2021). https://doi.org/10.1007/s12374-021-09319-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-021-09319-0

Keywords

Navigation