Skip to main content
Log in

Analysis of the Transcriptome of Polygonatum odoratum (Mill.) Druce Uncovers Putative Genes Involved in Isoflavonoid Biosynthesis

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Polygonatum odoratum (Mill.) Druce (P. odoratum) is a traditional Chinese herb. The isoflavonoids of P. odoratum are important medicinal bioactive compounds for the treatment of hypoimmunity, rheumatic heart disease, cardiovascular diseases, and diabetes. This study used RNA sequencing to identify potential genes regulating isoflavonoid biosynthesis in P. odoratum. To do this, we generated an overview of metabolic and secondary metabolic pathways, using MAPMAN, and identified 96 genes encoding seven key enzymes involved in isoflavonoid biosynthesis through their KEGG annotation. Alignment of phenylalanine ammonia-lyase or chalcone synthase amino acid sequences revealed well-conserved sequences, spatial structures, and active sites. We also verified the expression of key genes encoding phenylalanine ammonia-lyase and chalcone synthase by quantitative real-time PCR (qRT-PCR). This analysis of the isoflavonoid biosynthesis pathway and its crucial enzymes in P. odoratum lays the foundation for uncovering the regulatory mechanism of isoflavonoid biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

I can confirm I have included a statement regarding data and material availability in the declaration section of my manuscript. The RNA-seq datasets from three Polygonatum odoratum tissues were deposited within the NCBI Sequence Read Archive (SRA) database (Accession:SRP187533, https://dataview.ncbi.nlm.nih.gov/object/PRJNA525641?reviewer=lih1q117q13bmpui01fqq9uoik).

References

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7(10):986–995

    Article  CAS  PubMed  Google Scholar 

  • Ayabe S, Uchiyama H, Aoki T, Akashi T (2010) 1.24 plant phenolics. Phenylpropanoids 1:929–976

    Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birt DF, Hendrich S, Wang W (2001) Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther 90(2–3):157–177

    Article  CAS  PubMed  Google Scholar 

  • Camm EL, Towers GHN (1973) Phenylalanine ammonia lyase. Phytochemistry 12(5):961–973

    Article  CAS  Google Scholar 

  • Chen L, Guo Y, Zhang X, Ruifang MI (2015) Effects of 5-aminolevulinic acid on the content of total flavonoids and expression of chs and chi genes in young apples. Agric Biotechnol 3:39–42

    Google Scholar 

  • Fang C, Zhong H, Lin Y, Chen B, Han M, Ren H, Lu H, Luber JM, Xia M, Li W (2017) Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing. Gigascience 7(3):1–8

    Google Scholar 

  • Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6(8):775–784

    Article  CAS  PubMed  Google Scholar 

  • Fiechter G, Opacak I, Raba B, Mayer HK (2013) A new ultra-high pressure liquid chromatography method for the determination of total isoflavone aglycones after enzymatic hydrolysis: application to analyze isoflavone levels in soybean cultivars. Food Res Int 50(2):586–592

    Article  CAS  Google Scholar 

  • Fotsis T, Pepper M, Adlercreutz H, Hase T, Montesano R, Schweigerer L (1995) Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. J Nutr 125(3 Suppl):790S

    CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Xian A, Lin F, Raychowdhury R, Zeng Q (2011) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta OP, Nigam D, Dahuja A, Kumar S, Vinutha T, Sachdev A, Praveen S (2017) Regulation of isoflavone biosynthesis by miRNAs in two contrasting soybean genotypes at different seed developmental stages. Front Plant Sci 8:567

    PubMed  PubMed Central  Google Scholar 

  • Hai D, Huang Y, Tang Y (2010) Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol 86(5):1293–1312

    Article  CAS  Google Scholar 

  • Haiming L, Hong B, Wei L, Yuanshu W, Huanxin Z (2010) Study on chemical constituents of Polygonatum odoratum (Mill.) Druce. Food Drug 12(2):102–104

    Google Scholar 

  • Heinonen SM, Hoikkala A, Wahala K, Adlercreutz H (2003) Metabolism of the soy isoflavones daidzein, genistein and glycitein in human subjects. Identification of new metabolites having an intact isoflavonoid skeleton. J Steroid Biochem Mol Biol 87(4):285–299

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Kim YB, Kim Y, Lee MY, Park SU (2014) Overexpression of cinnamate 4-hydroxylase and 4-coumaroyl CoA ligase prompted flavone accumulation in Scutellaria baicalensis hairy roots. Nat Prod Commun 9(6):803–807

    CAS  PubMed  Google Scholar 

  • Kim H-S, Lee B-Y, Won E-J, Han J, Hwang D-S, Park HG, Lee J-S (2015) Identification of xenobiotic biodegradation and metabolism-related genes in the copepod Tigriopus japonicus whole transcriptome analysis. Mar Genom 24:207–208

    Article  Google Scholar 

  • Lin HW, Han GY, Liao SX (1994) Studies on the active constituents of the Chinese traditional medicine Polygonatum odoratum (Mill.) Druce. Yao xue xue bao Acta Pharm Sin 29(3):215

    CAS  Google Scholar 

  • Liou G, Chiang YC, Wang Y, Weng JK (2018) Mechanistic basis for the evolution of chalcone synthase catalytic cysteine reactivity in land plants. J Biol Chem 293(48):18601–18612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister CE, Lancaster JE, Walker JRL (1996) Phenylalanine ammonia-lyase (PAL) activity and its relationship to anthocyanin and flavonoid levels in New Zealand-grown apple cultivars. Am Soc Hortic Sci 121(2):281–285

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2 −ΔΔ C T method. Methods 25(4):402

    Article  CAS  PubMed  Google Scholar 

  • Martin CR (1993) Structure, function, and regulation of the chalcone synthase. Int Rev Cytol 147:233–284

    Article  CAS  PubMed  Google Scholar 

  • Mazur WM, Duke JA, Wahala K, Rasku S, Adlercreutz H (1998) Isoflavonoids and lignans in legumes: nutritional and health aspects in humans. J Nutr Biochem 9(4):193–200

    Article  CAS  Google Scholar 

  • Minoru K, Susumu G, Shuichi K, Yasushi O, Masahiro H (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–280

    Article  CAS  Google Scholar 

  • Nag S, Kumaria S (2018) In silico characterization and transcriptional modulation of phenylalanine ammonia lyase (PAL) by abiotic stresses in the medicinal orchid Vanda coerulea Griff. ex Lindl. Phytochemistry 156:176–183

    Article  CAS  PubMed  Google Scholar 

  • Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14(7):14950–14973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ritter H, Schulz GE (2004) Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell 16(12):3426–3436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schijlen EGWM, Vos CH, De Ric, Tunen AJ, Van Bovy AG (2004) Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65(19):2631–2648

    Article  CAS  PubMed  Google Scholar 

  • Shimada N, Akashi T, Aoki T, Ayabe S-i (2000) Induction of isoflavonoid pathway in the model legume Lotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Sci Int J Exp Plant Biol 160(1):37–47

    CAS  Google Scholar 

  • Shimamura M, Akashi T, Sakurai N, Suzuki H, Saito K, Shibata D, Ayabe S, Aoki T (2007) 2-Hydroxyisoflavanone dehydratase is a critical determinant of isoflavone productivity in hairy root cultures of Lotus japonicus. Plant Cell Physiol 48(11):1652–1657

    Article  CAS  PubMed  Google Scholar 

  • Shu XS, Lv JH, Tao J, Li GM, Li HD, Ma N (2009) Antihyperglycemic effects of total flavonoids from Polygonatum odoratum in STZ and alloxan-induced diabetic rats. J Ethnopharmacol 124(3):539–543

    Article  CAS  PubMed  Google Scholar 

  • Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2010) Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37(6):914–939

    Article  CAS  Google Scholar 

  • Thomas BF, Zeisel SH, Busby MG, Hill JM, Mitchell RA, Scheffler NM, Brown SS, Bloeden LT, Dix KJ, Jeffcoat AR (2001) Quantitative analysis of the principle soy isoflavones genistein, daidzein and glycitein, and their primary conjugated metabolites in human plasma and urine using reversed-phase high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Biomed Sci Appl 760(2):191–205

    Article  CAS  PubMed  Google Scholar 

  • Wang X (2011) Structure, function, and engineering of enzymes in isoflavonoid biosynthesis. Funct Integr Genom 11(1):13–22

    Article  CAS  Google Scholar 

  • Wang X, Li S, Li J, Li C, Zhang Y (2015a) De novo transcriptome sequencing in Pueraria lobatato identify putative genes involved in isoflavones biosynthesis. Plant Cell Rep 34(5):733–743

    Article  CAS  PubMed  Google Scholar 

  • Wang ZB, Shen WX, Zhu SP, Yang X, Zhao XC (2015b) Polymorphism and expression of chalcone synthase gene in citrus related to the flavonoids content. Acta Hortic Sin 3:435–444

    Google Scholar 

  • Wang S, Wang B, Hua W, Niu J, Dang K, Qiang Y, Wang Z (2017) De novo assembly and analysis of Polygonatum sibiricum transcriptome and identification of genes involved in polysaccharide biosynthesis. Int J Mol Sci 18(9):1950

    Article  PubMed Central  CAS  Google Scholar 

  • Wang C, Zhu J, Liu M, Yang Q, Wu J, Li Z (2018) De novo sequencing and transcriptome assembly of Arisaema heterophyllum Blume and identification of genes involved in isoflavonoid biosynthesis. Sci Rep 8(1):17643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang XG, Chen SB, Chen SL, Yang DJ, Liu TS (2005) Studies on TLC fingerprint of flavonoids in rhizome of Polygonatum odoratum. China J Chin Mater Med 30(2):104–106

    CAS  Google Scholar 

  • Yochum L, Kushi LH, Meyer K, Folsom AR (1999) Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. Am J Epidemiol 2(3):237–238

    Google Scholar 

  • Yong W, Jing L, Xia R (2010) Expression of chalcone synthase and chalcone isomerase genes and accumulation of corresponding flavonoids during fruit maturation of Guoqing No. 4 satsuma mandarin (Citrus unshiu Marcow). Sci Hortic 125(2):110–116

    Article  CAS  Google Scholar 

  • Zhang X, Allan AC, Li C, Wang Y, Yao Q (2015) De novo assembly and characterization of the transcriptome of the Chinese Medicinal Herb, Gentiana rigescens. Int J Mol Sci 16(5):11550

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Zhang Y, Zhao H, Liang J, Zhang Y, Shi S (2015) Antioxidant homoisoflavonoids from Polygonatum odoratum. Food Chem 186:63–68

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Beijing Genomics Institute for assistance with experiments and Qingshan Yang for identifying plant materials.

Funding

This work was financially supported by the Project of Sustainable Utilization of Famous Traditional Chinese Medicine Resources (Grant No. 2060302), the Natural Science Research Grant of Higher Education of Anhui Province (KJ2018ZD028), the Natural Science Foundation of Anhui Province of China (1408085QH182) and National project cultivation fund of Anhui University of Chinese Medicine (2020py02).

Author information

Authors and Affiliations

Authors

Contributions

Project design: JWW and LQH, Experiments and data analysis: SXZ, YYS, CMS, LQZ, and KLM. Manuscript preparation: SXZ. Manuscript revision: JWW. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Luqi Huang or Jiawen Wu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Shi, Y., Shan, C. et al. Analysis of the Transcriptome of Polygonatum odoratum (Mill.) Druce Uncovers Putative Genes Involved in Isoflavonoid Biosynthesis. J. Plant Biol. 63, 217–228 (2020). https://doi.org/10.1007/s12374-020-09246-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09246-6

Keywords

Navigation