Skip to main content
Log in

Overexpression of rice phosphate transporter gene OsPT2 enhances nitrogen fixation and ammonium assimilation in transgenic soybean under phosphorus deficiency

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Phosphorus (P) deficiency is one of the major factors that limit legume nodulation and nitrogen (N) fixation, and thus legume productivity. In our previous study, we showed that three T2 transgenic soybean lines overexpressing rice phosphate transporter gene OsPT2 showed enhanced tolerance to low P stress. This study aimed to determine whether OsPT2 overexpression would increase N2 fixation and ammonium assimilation in three T3 homozygous transgenic lines (HTLs) under P deficiency in pot culture. Under low inorganic phosphate (Pi) conditions, the P accumulation, total N and total ureide concentrations were significantly higher in the T3 HTLs than in the wild type (WT) plants. Further, the T3 HTLs showed significantly better plant growth performance and nodule development than the WT plants under low-Pi conditions. Quantitative real-time PCR (qRT-PCR) analysis showed that the expression levels of GmENOD40-1, GmENOD40-2 (two early nodulin genes), and GmLba (one leghemoglobin gene) were significantly increased in T3 HTLs under P deficiency at 24 and 32 d after inoculation (DAI). The increased transcript levels of GmGS1β1 and GmGS1β2 (two cytosolic glutamine synthetase genes) in the T3 HTLs were consistent with the increase in glutamine synthetase (GS, EC 6.3.1.2) activity at 32 DAI. Our results indicated that the overexpression of OsPT2 in T3 HTLs enhances N2 fixation and ammonium assimilation activity under low P stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai PH, Sun SB, Zhao JN, Fan XR, Xin WJ, Guo, Q, Yu L, Shen QR, Wu P, Miller AJ, Xu GH (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809

    Article  CAS  PubMed  Google Scholar 

  • Al-Niemi TS, Kahn ML, McDermott TR (1998) Phosphorus uptake by bean nodules. Plant Soil 198:71–78

    Article  CAS  Google Scholar 

  • Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125:1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabeza RA, Liese R, Lingner A, von Stieglitz I, Neumann J, Salinas-Riester G, Pommerenke C, Dittert K, Schulze J (2014) RNA-seq transcriptome profiling reveals that Medicago truncatula nodules acclimate N2 fixation before emerging P deficiency reaches the nodules. J Exp Bot 65:6035–6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai HM, Xie WB, Lian XM (2013) Comparative analysis of differentially expressed genes in rice under nitrogen and phosphorus starvation stress conditions. Plant Mol Biol Rep 31:160–173

    Article  CAS  Google Scholar 

  • Chen GH, Yan W, Yang SP, Wang A, Gai JY, Zhu YL (2015) Overexpression of rice phosphate transporter gene OsPT2 enhances tolerance to low phosphorus stress in soybean. J Agr Sci Tech 17:469–482

    Google Scholar 

  • Chen ZJ, Cui QQ, Liang CY, Sun LL, Tian J, Liao H (2011). Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis. Proteomics 11:4648–4659

    Article  CAS  PubMed  Google Scholar 

  • Divito GA, Sadras VO (2014) How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crop Res 156:161–171

    Article  Google Scholar 

  • Duran VA, Todd CD (2012) Four allantoinase genes are expressed in nitrogen-fixing soybean. Plant Physiol Biochem 54:149–155

    Article  CAS  PubMed  Google Scholar 

  • Fan CM, Wang X, Hu RB, Wang YH, Xiao CW, Jiang Y, Zhang XM, Zheng CY, Fu Y-F (2013) The pattern of Phosphate transporter 1 genes evolutionary divergence in Glycine max L. BMCPlant Biol 13:48

    CAS  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández G, Valdés-López O, Ramírez M, Goffard N, Weiller G, Aparicio-Fabre R, Fuentes SI, Erban A, Kopka J, Udvardi MK, Vance CP (2009) Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiol 151:1221–1238

    Article  PubMed  PubMed Central  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Israel DW (1987) Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol 84:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouchi H, Hata S (1993) Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Gene 238:106–119

    CAS  Google Scholar 

  • Le Roux MR, Khan S, Valentine AJ (2008) Organic acid accumulation may inhibit N2 fixation in phosphorus-stressed lupin nodules. New Phytol 177:956–964

    Article  CAS  PubMed  Google Scholar 

  • Le Roux MR, Khan S, Valentine AJ (2009) Nitrogen and carbon costs of soybean and lupin root systems during phosphate starvation. Symbiosis 48:102–109

    Article  CAS  Google Scholar 

  • Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, Stacey G (2008) Identification of four soybean reference genes for gene expression normalization. Plant Genom J 1:44–54

    Article  CAS  Google Scholar 

  • Li CC, Gui SH, Yang T, Walk T, Wang XR, Liao H (2012) Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Ann Bot 109:275–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Wang ZY, Ren HY, Shen CJ, Li Y, Ling H-Q, Wu CY, Lian XG, Wu P (2010) OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. Plant J 62:508–517

    Article  CAS  PubMed  Google Scholar 

  • Masalkar P, Wallace IS, Hwang JH, Roberts DM (2010) Interaction of cytosolic glutamine synthetase of soybean root nodules with the C-terminal domain of the symbiosome membrane nodulin 26 aquaglyceroporin. J Biol Chem 285:23880–23888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao SJ, Qiao YF, Han XZ, An M (2007) Nodule formation and development in soybeans (Glycine max L.) in response to phosphorus supply in solution culture. Pedosphere 17:36–43

    Article  CAS  Google Scholar 

  • Morey KJ, Ortega JL, Sengupta-Gopalan C (2002) Cytosolic glutamine synthetase in soybean is encoded by a multigene family, and the members are regulated in an organ-specific and developmental manner. Plant Physiol 128:182–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neal D, Joy KW (1973) Glutamine synthetase of pea leaves. I. Purification, stabilization, and pH optima. Arch Biochem Biophys 159:113–122

    Article  PubMed  Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Olivera M, Tejera N, Iribarne C, Ocaña A, Lluch C (2004) Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): effect of phosphorus. Plant Physiol 121:498–505

    Article  CAS  Google Scholar 

  • Ott T, van Dongen JT, Günther C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK (2005) Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr Biol 15:531–535

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Zhao J, Tian J, Chen LY, Sun ZA, Guo YX, Lu X, Gu M, Xu GH, Liao H (2012) The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiol 159:1634–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribet J, Drevon JJ (1995) Increase in permeability to oxygen and in oxygen uptake of soybean nodules under limiting phosphorus nutrition. Physiol Plant 94:298–304

    Article  CAS  Google Scholar 

  • Rodríguez-Navarro DN, Santamaría C, Temprano F, Leidi EO (1999) Interaction effects between Rhizobium strain and bean cultivar on nodulation, plant growth, biomass partitioning and xylem sap composition. Eur J Agron 11:131–143

    Article  Google Scholar 

  • Sa T-M, Israel DW (1991) Energy status and functioning of phosphorusdeficient soybean nodules. Plant Physiol 97:928–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sa T-M, Israel DW (1995) Nitrogen assimilation in nitrogen-fixing soybean plants during phosphorus deficiency. Crop Sci 35:814–820

    Article  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Schulze J (2004) How are nitrogen fixation rates regulated in legumes? J Plant Nutr Soil Sci 167:125–137

    Article  CAS  Google Scholar 

  • Schulze J, Drevon JJ (2005) P-deficiency increases the O2 uptake per N2 reduced in alfalfa. J Exp Bot 56:1779–1784

    Article  CAS  PubMed  Google Scholar 

  • Schulze J, Temple G, Temple SJ, Beschow H, Vance CP (2006) Nitrogen fixation by white lupin under phosphorus deficiency. Ann Bot 98:731–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seabra AR, Silva LS, Carvalho HG (2013) Novel aspects of glutamine synthetase (GS) regulation revealed by a detailed expression analysis of the entire GS gene family of Medicago truncatula under different physiological conditions. BMC Plant Biol 13:137

    Article  PubMed  PubMed Central  Google Scholar 

  • She QX, Sandal NN, Stougaard J, Marcker KA (1993) Comparative sequence analysis of cis elements present in Glycine max L. leghemoglobin lba and lbc3 genes. Plant Mol Biol 22:931–935

    Article  CAS  PubMed  Google Scholar 

  • Shen JB, Yuan LX, Zhang JL, Li, HG, Bai ZH, Chen XP, Zhang WF, Zhang FS (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimoda Y, Shimoda-Sasakura F, Kucho K, Kanamori N, Nagata M, Suzuki A, Abe M, Higashi S, Uchiumi T (2009) Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity between Mesorhizobium loti and Lotus japonicus. Plant J 57:254–263

    Article  CAS  PubMed  Google Scholar 

  • Sulieman S, Fischinger SA, Gresshoff PM, Schulze J (2010) Asparagine as a major factor in the N-feedback regulation of N2 fixation in Medicago truncatula. Physiol Plant 140:21–31

    Article  CAS  PubMed  Google Scholar 

  • Sulieman S, Schulze J, Tran L-SP (2013a) Comparative analysis of the symbiotic efficiency of Medicago truncatula and Medicago sativa under phosphorus deficiency. Int J Mol Sci 14:5198–5213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulieman S, Schulze J, Tran L-SP (2014) N-feedback regulation is synchronized with nodule carbon alteration in Medicago truncatula under excessive nitrate or low phosphorus conditions. J Plant Physiol 171:407–410

    Article  CAS  PubMed  Google Scholar 

  • Sulieman S, Van Ha C, Schulze J, Tran L-SP (2013b) Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. J Exp Bot 64:2701–2712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang C, Hinsinger P, Drevon JJ, Jaillard B (2001) Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula L. Ann Bot 88:131–138

    Article  CAS  Google Scholar 

  • Tesfaye M, Liu J, Allan DL, Vance CP (2007) Genomic and genetic control of phosphate stress in legumes. Plant Physiol 144:594–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thuynsma R, Valentine A, Kleinert A (2014) Phosphorus deficiency affects the allocation of below-ground resources to combined cluster roots and nodules in Lupinus albus. J Plant Physiol 171:285–291

    Article  CAS  PubMed  Google Scholar 

  • Valverde C, Ferrari A, Wall LG (2002) Phosphorus and the regulation of nodulation in the actinorhizal symbiosis, between Discaria trinervis (Rhamnaceae) and Frankia BCU110501. New Phytol 153:43–51

    Article  CAS  Google Scholar 

  • Vogels GD, Van Der Drift C (1970) Differential analyses of glyoxylate derivatives. Anal Biochem 33:143–157

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Shou HX, Xu GH, Lian XM (2013) Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr Opin Plant Biol 16:1–8

    Article  Google Scholar 

  • Zhou J, Jiao FC, Wu ZC, Li YL, Wang XM, He XW, Zhong WQ, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuelin Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Yang, L., Yang, S. et al. Overexpression of rice phosphate transporter gene OsPT2 enhances nitrogen fixation and ammonium assimilation in transgenic soybean under phosphorus deficiency. J. Plant Biol. 59, 172–181 (2016). https://doi.org/10.1007/s12374-016-0535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0535-0

Keywords

Navigation