Skip to main content
Log in

Shaping the understanding of saliva-derived effectors towards aphid colony proliferation in host plant

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

‘Effectors’ are proteins and/or small molecules that originated from aphid saliva gland and its secretion is initiated due to interaction between host and insect. The effectors have the ability to manipulate the host cell structure as well as function similar to pathogen’s effectors. Like pathogen’s effectors, aphid effectors suppress the hosts’ defense responses as well as hosts’ defense induction or both. In the susceptible interaction with the host, aphid effectors alter plant processes that contribute to the establishment of compatibility that promotes aphid proliferation. In the susceptible reaction with the host, aphid effectors contribute to the successful salivation and sustainability of the sieve element sap ingestion that have promoting role in more aphid proliferation. In the resistant interaction with the host, aphid effectors are recognized by the typical plant receptors and elicit the induction the effective defense response. As a result, aphid proliferation is reduced due to reduced compatibility establishment in the resistant host. This review focuses on the exciting progress in aphid effector biology that insights new perspective in the molecular basis of plant–aphid interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atamian HS, Chaudhary R, Dal Chin V, Bao E, Girke T, Kaloshian I (2013) In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity. Mol. Plant Microbe Interact 26:67–74, doi: 10.1094/MPMI-06-12-0144-FI

    Article  CAS  PubMed  Google Scholar 

  • Behnke HD, Sjolund RD (eds) (1990) Sieve Elements. Comparative Structure, Induction, and Development. Berlin: Springer-Verlag, doi: 10.1007/978-3-642-74445-7

    Google Scholar 

  • Blackman L, Eastop VF (2000) Aphids on the world crops. Wiley & Sons, Chichester, U.K.

    Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the World’s Crops. Chichester: John Wiley and Sons

    Google Scholar 

  • Bos JIB, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA (2010) A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet 6:e1001216, doi: 10.1371/journal.pgen.1001216

    Article  PubMed  PubMed Central  Google Scholar 

  • Carolan JC, Fitzroy CIJ, Ashton PD, Douglas AE, Wilkinson TL (2009) The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterized by mass spectrometry. Proteomics 9:2457–2467, doi: 10.1002/pmic.200800692

    Article  CAS  PubMed  Google Scholar 

  • Carolan JC, Caragea D, Reardon KT, Mutti NS, Dittmer N, Pappan K, Cui F, Castaneto M, Poulian J, Dossat C, Tagu D, Reese JC, Reeck GR, Wilkinson TL, Edwards OR. (2011) Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): a dual transcriptomic/proteomic approach. J Proteome Res 10:1505–1518, doi: 10.1021/pr100881q

    Article  CAS  PubMed  Google Scholar 

  • Casteel CL, Walling LL, Paine TD (2006) Behavior and biology of the tomato psyllid, Bactericerca cockerelli, in response to the Mi-1.2 gene. Entomol Exp Appl 121:67–72

    Article  CAS  Google Scholar 

  • Cherqui A, Tjallingii WF (2000) Salivary proteins of aphids, a pilot study on identification, separation, and immunolocalisation. J Insect Physiol 46:1177–1186, doi: 10.1016/S0022-1910(00)00037-8

    Article  CAS  PubMed  Google Scholar 

  • Cooper WR, Dillwith JW, Puterka GJ (2010) Salivary proteins of Russian wheat aphid (Hemiptera: Aphididae). Environ Entomol 39:223–231

    Article  CAS  PubMed  Google Scholar 

  • Cronshaw J (1981) Phloem structure and function. Annu Rev Plant Physiol 32:465–484, doi: 10.1146/annurev.pp.32.060181.002341

    Article  CAS  Google Scholar 

  • Cronshaw J, Sabnis DD (1990) “Phloem proteins”, in Sieve elements. Comparative Structure, Induction, and Development, eds H.D. Behnke and R.D. Sjolund (Berlin: Springer-Verlag):257–283

    Google Scholar 

  • Cui F, Michael Smith C, Reese J, Edwards O, Reeck G (2012) Polymorphisms in salivary-gland transcripts of Russian wheat aphid biotypes 1 and 2. Insect Science 19:429–440. Curr Opin Plant Biol 14:1–7, doi: 10.1016/j.pbi.2011.05.003

    Article  CAS  Google Scholar 

  • De Vos M, Jander G (2009) Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant Cell Environ 32:1548–1560, doi: 10.1111/j.1365-3040.2009.02019.x

    Article  PubMed  Google Scholar 

  • DeLay B, Mamidala P, Wijeratne A, Wijeratne S, Mittapalli O, Wang, J, Lamp W. (2012) Transcriptome analysis of the salivary glands of potato leafhopper, Empoasca fabae. J Insect Physiol 58: 1626–1634, doi: 10.1016/j.jinsphys.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  • Dinant S, Bonnemain JL, Girousse C, Kehr J (2010) Phloem sap intricacy and interplay with aphid feeding. C.R. Biol 333:504–515, doi: 10.1016/j.crvi.2010.03.008

    Article  PubMed  Google Scholar 

  • Dinant S, Lemoine R (2010). The phloem pathway: new issues and old debates. C.R. Biol 333:307–319, doi: 10.1016/j.crvi.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  • Dixon AFG (1987) Parthenogenetic reproduction and the rate of increase in aphids. In Aphids, Their Biology, Natural Enemies and Control. Edited by Minks AK, Harrewijn P Elsevier 269–287

    Google Scholar 

  • Dixon AFG (1998) Aphid Ecology: An Optimization Approach, 2nd Edn. New York, NY: Chapman and Hall

    Google Scholar 

  • Dogimont C, Bendahmane A, Chovelon V, Boissot N (2010) Host plant resistance to aphids in cultivated crops: genetic and molecular bases, and interactions with aphid populations. CR Biol 333: 566–573

    Article  CAS  Google Scholar 

  • Evert RF (1982) Sieve tube structure in relation to function. Bioscience 32:789–795, doi: 10.2307/1308972

    Article  Google Scholar 

  • Furch ACU, Hafke JB, van Bel AJE (2008) Plant and stimulus specific variations in remote control led sieve tube occlusion. Plant Signal Behav 3:858–861, doi: 10.4161/psb.3.10.6040

    Article  PubMed  PubMed Central  Google Scholar 

  • Furch ACU, Hafke JB, Schulz A, van Bel AJE (2007) Ca2+ mediated remote control of reversible sieve tube occlusion in Vicia faba. J Exp Bot 58:2827–2838, doi: 10.1093/jxb/erm143

    Article  CAS  PubMed  Google Scholar 

  • Furch ACU, van Bel AJE, Fricker MD, Felle HH, Fuchs M, Hafke JB (2009). Sieve element Ca2+ channels as relay stations between remote stimuli and sieve tube occlusion in Vicia faba. Plant Cell 21:2118–2132, doi: 10.1105/tpc.108.063107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furch ACU, Zimmermann MR, Will T, Hafke JB, van Bel AJE (2010) Remote controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima. J Exp Bot 61:3697–3708, doi: 10.1093/jxb/erq181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giordanengo P, Brunissen L, Rusterucci C, Vincent C, van Bel A.J.E., Dinant S, Girousse C, Faucher M, Bonnemain JL. (2010) Compatible plant-aphid interactions: how aphids manipulate plant responses. C. R. Biol 333:516–523, doi: 10.1016/j.crvi.2010.03.007

    Article  PubMed  Google Scholar 

  • Girousse C, Moulia B, Silk W, Bonnemain JL (2005) Aphid infestation causes different changes in carbon and nitrogen allocation in alfalfa stems as well as different inhibitions of longitudinal and radial expansion. Plant Physiol 137:1474–1484, doi: 10.1104/pp.104.057430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould N, Minchin PEH, Thorpe MR (2004) Direct measurements of sieve element hydrostatic pressure reveal strong regulation after pathway blockage. Funct Plant Biol 31:987–993, doi: 10.1071/FP04058

    Article  Google Scholar 

  • Günthardt MS, Wanner H (1981) The feeding behaviour of two leaf hoppers on Vicia faba. Ecol Entomol 6, 17–22, doi: 10.1111/j.1365-2311.1981.tb00968.x

    Article  Google Scholar 

  • Hafke JB, van Amerongen JK, Kelling F, Furch ACU, Gaupels F, van Bel AJE (2005) Thermodynamic battle for photosynthate acquisition between sieve tubes and adjoining parenchyma in Transport phloem. Plant Physiol 138:1527–1537, doi: 10.1104/pp.104.058511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmel N, Letocart E, Cherqui A, Giordanengo P, Mazzuchelli G, Guillonneau F, Pauw ED, Haubruge e and Francis F. (2008) Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Insect Mol Biol 17:165–174, doi: 10.1111/j.1365-2583.2008.00790.x

    Article  CAS  PubMed  Google Scholar 

  • Harris KF, Treur B, Tsai J, Toler R (1981) Observations on leafhopper ingestion-egestion behaveior: its likely role in the transmission of non-circulative viruses and other plant pathogens. J Econ Entomol 74:446–453

    Article  Google Scholar 

  • Hattori M, Nakamura M, Komatsu S, Tsuchihara K, Tamura Y, Hasegawa T (2012) Molecular cloning of a novel calcium binding protein in the secreted saliva of the green rice leafhopper Nephotettix cincticeps. Insect Biochem. Mol Biol 42:1–9, doi: 10.1016/j.ibmb.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  • Hewer A, Becker A, van Bel AJE (2011) Anaphid’s Odyssey–the cortical quest for the vascular bundle. J Exp Biol 214:3868–3879, doi: 10.1242/jeb.060913

    Article  CAS  PubMed  Google Scholar 

  • Hewer A, Will T, van Bel AJE (2010) Plant cues for aphid navigation in vascular tissues. J Exp Biol 213:4030–4042, doi: 10.1242/jeb.046326

    Article  PubMed  Google Scholar 

  • Hill CB, Crull L, Herman TK, Voegtlin DJ, Hartman GL (2010) A new soybean aphid (Hemiptera: Aphididae) biotype identified. J Econ Entomol 103:509–515

    Article  CAS  PubMed  Google Scholar 

  • Hogenhout SA, Bos JIB (2011) Effector proteins that modulate plantinsect interactions

    Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kempers R, Ammerlaan A, van Bel AJE (1998) Symplasmic constriction and ultrastructural features of the sieve element/companion cell complex in the transport phloem of apoplasmically and symplasmically phloem-loading species. Plant Physiol 116: 271–278, doi: 10.1104/pp.116.1.271

    Article  CAS  PubMed Central  Google Scholar 

  • Kim K, Hill CB, Hartman GL, Hyten DL, Hudson ME, Diers BW (2010) Fine mapping of the soybean aphid-resistance gene Rag2 in soybean PI 200538. Theor Appl Genet 121:599–610, doi: 10.1007/s00122-010-1333-6

    Article  CAS  PubMed  Google Scholar 

  • Klingler JP, Nair RM, Edwards OR, Singh KB (2009) A single gene, AIN, in Medicago runcatula mediates a hypersensitive response to both bluegreen aphid and pea aphid, but confers resistance only to bluegreen aphid. J Exp Bot 60:4115–4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klingler J, Creasy R, Gao L, Nair RM, Calix AS, Jacob HS, Edwards, OR, Singh KB (2005) Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol 137:1445–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoblauch M, van Bel AJE (1998) Sieve tubes inaction. Plant Cell 10:35–50, doi: 10.1105/tpc.10.1.35

    Article  CAS  PubMed Central  Google Scholar 

  • Knoblauch M, Peters WS, Ehlers K, van Bel AJE (2001) Reversible calcium regulated stop cocks in legume sieve tubes. Plant Cell 13:1221–1230, doi: 10.1105/tpc.13.5.1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol 175: 176–184, doi: 10.1111/j.1469-8137.2007.02090.x

    Article  PubMed  Google Scholar 

  • Lapitan NLV, Li YC, Peng JH, Botha AM (2007) Fractionated extracts of Russian wheat aphid eliciting defense responses in wheat. J Econ Entomol 100:990–999

    Article  PubMed  Google Scholar 

  • Liu Y, Wang WL, Guo GX, Ji XL (2009) Volatile emission in wheat and parasitism by Aphidius avenae after exogenous application of salivary enzymes of Sitobion avenae. Entomol Exp Appl 130: 215–221

    Article  CAS  Google Scholar 

  • Ma R, Chen JL, Cheng DF, Sun JR (2010) Activation of defense mechanism in wheat by polyphenol oxidase from aphid saliva. J Agric Food Chem 58:2408–2410

    Google Scholar 

  • Ma R, Reese JC, Black WC IV, Bramel-Cox P (1990) Detection of pectin esterase and polygalacturonase from salivary secretions of living green bugs, Schizaphis graminum (Homoptera: Aphididae). J Insect Physiol 36:507–512, doi: 10.1016/0022-1910(90)90102-L

    Article  CAS  Google Scholar 

  • Martens HJ, Roberts AG, Oparka KJ, Schulz A (2006) Quantification of plasmodesmatal endoplasmic reticulum coupling between sieve elements and companion cells using fluorescence redistribution after photo bleaching. Plant Physiol 142:471–480, doi: 10.1104/pp.106.085803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews REF (1991) “Relationships between plant viruses and invertebrates”, in Plant Virology, 3rd Edn., ed R. E. F. Matthews (San Diego, CA: Academic Press), 520–561, doi: 10.1016/B978-0-12-480553-8.50019-5

    Chapter  Google Scholar 

  • McLean DL, Kinsey MG (1965) Identification of electrically recorded curve patterns associated with aphid salivation and ingestion. Nature 205:1130–1131, doi: 10.1038/2051130a0

    Article  CAS  PubMed  Google Scholar 

  • Miles PW (1999) Aphid saliva. Biol Rev 74:41–85

    Article  Google Scholar 

  • Miles PW (1965) Studies on the salivary physiology of plant-bugs: the salivary secretions of aphids. J Insect Physiol 11:1261–1268, doi: 10.1016/0022-1910(65)90119-8

    Article  CAS  PubMed  Google Scholar 

  • Milligan SB, Bodeau J, Yaqhoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan JK, Luzio GA, Ammar E-D, Hunter WB, Hall DG, Shatters RG Jr. (2013) Formation of stylet sheaths in aere (in air) from eight species of phytophagous hemipterans from six families suborders: Auchenorrhyncha and Sternorrhyncha). PLoSONE 8:e62444, doi: 10.1371/journal.pone.0062444

    Article  CAS  Google Scholar 

  • Mullendore DL, Windt CW, HenkVan A, Knoblauch M (2010) Sieve tube geometry in relation to phloem flow. Plant Cell 22:579–593, doi: 10.1105/tpc.109.070094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Münch E (1930) Die Stoffbewegung in der Pflanze. Jena: Fischer

    Google Scholar 

  • Mutti NS, Louis J, Pappan LK, Pappan K, Begum K, Chen MS, Yoonseong P, Neal D, Jeremy M, John CR, and Gerald RR. (2008) A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc Natl Acad Sci USA

    Google Scholar 

  • Mutti NS, Park Y, Reese JC, Reeck GR (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect Sci 6:38, doi: 10.1673/031.006.3801

    Article  PubMed Central  Google Scholar 

  • Nicholson SJ, Hartson SD, Puterka GJ (2012) Proteomic analysis of secreted saliva from Russian Wheat Aphid (Diuraphisnoxia Kurd.) biotypes that differ in virulence to wheat. J Proteomics 75:2252–2268, doi: 10.1016/j.jprot.2012.01.031

    Article  CAS  PubMed  Google Scholar 

  • Nombela G, Williamson VM, Muniz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant-Microbe Interact 16:645–649

    Article  CAS  PubMed  Google Scholar 

  • Pelissier HC, Peters WS, Collier R, van Bel AJ, Knoblauch M (2008) GFP tagging of sieve element occlusion (SEO) proteins results in green fluorescent forisomes. Plant Cell Physiol 49:1699–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitino M, Hogenhout SA (2013). Aphid protein effectors promote aphid colonization in a plant species specific manner. Mol Plant Microbe Interact 26:130–139, doi: 10.1094/MPMI-07-12-0172-FI

    Article  CAS  PubMed  Google Scholar 

  • Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE 6:e25709, doi: 10.1371/journal.pone.0025709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard DG (1973). Plant penetration by feeding aphids (Hemiptera: Aphidoidea): a review. Bull Entomol Res 62:631–714, doi: 10.1017/S0007485300005526

    Article  Google Scholar 

  • Prado E, Tjallingii WF (1994) Aphid activities during sieve element punctures. Entomol Exp Appl 72:157–165, doi: 10.1111/j.1570-7458.1994.tb01813.x

    Article  Google Scholar 

  • Rao SA, Carolan JC, Wilkinson TL (2013) Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS ONE 8:e57413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez PA, Bos JIB (2013) Toward understanding the role of aphid effectors in plant infestation. Mol Plant-Microbe Interact 26:25–30, doi: 10.1094/MPMI-05-12-0119-FI

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz A (1998) The phloem Structure related to function. Prog Bot 59:429–475, doi: 10.1007/978-3-642-80446-5_16

    Article  Google Scholar 

  • Schulz A (1998) The phloem. Structure related to function. Prog Bot 59:429–475, doi: 10.1007/978-3-642-80446-5_16

    Google Scholar 

  • Seah S, Sivasithamparam K, Karakousis A, Lagudah ES (1998) Cloning and characterisation of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet 97:937–945

    Article  CAS  Google Scholar 

  • Stavrinides J, Ma W, Guttman DS (2006) Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. PLoS Pathog 2:e104

    Article  PubMed  PubMed Central  Google Scholar 

  • Takemoto H, Takabayashi J (2012) Exogenous application of liquid diet, previously fed upon by pea aphids Acyrthosiphon pisum (Harris), to broad bean leaves induces volatiles attractive to the specialist parasitic wasp Aphidius ervi (Haliday). J Plant Interact 8:78–83

    Article  Google Scholar 

  • Tjallingii WF (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57:739–745

    Article  CAS  PubMed  Google Scholar 

  • Tjallingii WF (1990) “Continuous recording of stylet penetration activities by aphids”, in Aphid–plant genotype interactions, eds R. K. Campbell and R. D. Eikenbary (Amsterdam: Elsevier), 89–99

    Google Scholar 

  • Uzest M, Gargani D, Dombrovsky A, Cazevieille C, Cot D, Blanc S (2010) The “acrostyle” a newly described anatomical structure in aphid stylets. Arthropod Struct Dev 39:221–229, doi: 10.1016/j.asd.2010.02.005

    Article  PubMed  Google Scholar 

  • van Bel AJE (1996) Interaction between sieve element and companion cell and the consequence for photo assimilate distribution: two structural hardware frames with associated physiological software packages in dicotyledons. J Exp Bot 47:1129–1140, doi: 10.1093/jxb/47.Special_Issue.1129

    Article  PubMed  Google Scholar 

  • van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149, doi: 10.1046/j.1365-3040.2003.00963.x

    Article  Google Scholar 

  • van Bel AJE, Gaupels F (2004) Pathogen induced resistance and alarm signals in the phloem. Mol Plant Pathol 5:465–504, doi: 10.1111/j.1364-3703.2004.00243.x

    Article  Google Scholar 

  • van Bel AJE, Knoblauch M (2000) Sieve element and companion cell: the story of the comatose patient and the hyperactive nurse. Aust J Plant Physiol 27:477–487, doi: 10.1071/PP99172

    Google Scholar 

  • van Emden, HF Harrington, R (eds) (2007) Aphids as crop pests. CABI, UK

    Book  Google Scholar 

  • Walker GP, Medina-Ortega KJ (2012) Penetration of faba bean sieve elements by pea aphid does not trigger forisome dispersal. Ento Mol Exp Appl 144:326–335, doi: 10.1111/j.15707458.2012.01297.x

    Article  Google Scholar 

  • Walling L (2000) The myriad plant responses to herbivores. J. Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866, doi: 10.1104/pp.107.113142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Tang M, Hao PY, Yang ZF, Zhu LL, He GC (2008) Penetration into rice tissues by brown plant hopper and fine structure of the salivary sheaths. Entomol Exp Appl 129:295–307, doi: 10.1111/j.1570-7458.2008.00785.x

    Article  Google Scholar 

  • Will T, Kornemann SR, Furch ACU, Tjallingii WF, van Bel AJE (2009) Aphid watery saliva counteracts sieve-tube occlusion: a universal phenomenon? J Exp Biol 212:3305–3312

    Article  CAS  PubMed  Google Scholar 

  • Will T, Steckbauer K, Hardt M, van Bel AJE (2012a) Aphid gel saliva: sheath structure, protein composition and secretory dependence on stylet-tip milieu. PLoS ONE 2012:7

    Google Scholar 

  • Will T, Tjallingii WF, Tho¨nnessen A, van Bel AJE (2007) Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci USA 104:10536–10541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Will T, Carolan JC, Wilkinson TL (2012b) “Breaching the sieve element: the role of saliva as the molecular interface between aphids and the phloem”, in Biochemistry of Phloem, eds G.A. Thompson and A.J.E. van Bel (Hoboken: Wiley-Blackwell), 310–327

    Chapter  Google Scholar 

  • Will T, van Bel AJE (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57:729–737, doi: 10.1093/jxb/erj089

    Article  CAS  PubMed  Google Scholar 

  • Wilson ACC, Sternberg LDSL, Hurley KB (2011) Aphids alter hostplant nitrogen isotope fractionation. Proc Natl Acad Sci USA 108:10220–10224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wroblewski T, Piskurewicz A, Tomczak O, Ochoa O, Michelmore R. W (2007) Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities. Plant J 51:803–818

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MR, Mithöfer A (2013). “Electrical long distance signaling in plants”, in Long Distance Systemic Signaling and Communication in Plants, ed. F. Baluska (Heidelberg: Springer), 291–308, doi: 10.1007/978-3-642-36470-9_15

    Chapter  Google Scholar 

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16, doi: 10.1016/j.coi.2007.11.003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossain Ali Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, H.A. Shaping the understanding of saliva-derived effectors towards aphid colony proliferation in host plant. J. Plant Biol. 60, 103–115 (2017). https://doi.org/10.1007/s12374-016-0465-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0465-x

Keywords

Navigation