Skip to main content
Log in

Soybean GmAOC3 promotes plant resistance to the common cutworm by increasing the expression of genes involved in resistance and volatile substance emission in transgenic tobaccos

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

The evaluation and use of endogenous soybean genes is an effective strategy to minimize the yield losses caused by insects. Allene oxide cyclase (AOC) catalyzes the most important step in the biosynthesis of jasmonate (JA), which plays a crucial role in plant defense against insects. In this study, the role of GmAOC3 in plant insect resistance was evaluated. Real-time PCR results indicate that GmAOC3 was uniquely and rapidly activated and attained peak expression in leaves after attack by the common cutworm (CCW). In insect bioassays, transgenic lines overexpressing GmAOC3 were significantly less damaged than wild-type plants, and the relative growth rate of CCW fed with leaves from transgenic lines was significantly lower than that of CCW fed with leaves from wild-type plants. Electron microscopy revealed that the density of leaf trichomes in transgenic lines overexpressing GmAOC3 was greater than that in wild-type tobacco. Several physiological and morphological indicators, including JA, phenolic content and the relative expression levels of the putrescine N-methyltransferase (PMT) and proteinase inhibitor (PI) genes, phenylalanine ammonia lyase (PAL) activity and volatile substances, increased in the transgenic plants overexpressing GmAOC3. Our findings indicate that GmAOC3 plays an important role in soybean resistance to CCW and can be used as a resource for plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An Y, Shen YB, Wu LJ, Zhang ZX (2006) A change of phenolicacids content in poplar leaves induced by methyl salicylate and methyl jasmonate. J Forest Res 17:107–110

    Article  CAS  Google Scholar 

  • Agrawal AA (2000) Benefits and costs of induced plant defense for Lepidium virginicum (Brassicaceae). Ecology 81:1804–1813

    Article  Google Scholar 

  • Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:132–149

    Article  Google Scholar 

  • Bi HH, Zeng RS, Su LM, An M, Luo SM (2007) Rice allelopathy induced by methyl jasmonate and methyl salicylate. J Chem Ecol 33:1089–1103

    Article  CAS  PubMed  Google Scholar 

  • Boughton AJ, Hoover K, Felton GW (2005) Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycoperscion esculentum. J Chem Ecol 31:2211–2216

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann H, Vignutelli A, Hilpert B, Miersch O, Wasternack C, Apel K (1998) Wounding and chemicals induce expression of the Arabidopsis thaliana gene Thi2.1, encoding a fungal defense thionin, via the octadecanoid pathway. FEBS Lett 437:281–286

    Article  CAS  PubMed  Google Scholar 

  • Camacho-cristobal JJ, Anzellottib D, Gonzalez-Fontes A (2002) Changes in phenolic metabolism of tobacco plants during shortterm boron deficiency. Plant Physiol Biochem 40:997–1002

    Article  CAS  Google Scholar 

  • Chen C, Tong ZF, Liao D, Li Y, Yang G, Li MF (2014) Chemical composition and antimicrobial and DPPH scavenging activity of essential oil of Toona sinensis (A. Juss.) Roem from China. Bioresources 9:5262–5278

    Google Scholar 

  • Chen FC, Chen CJ, Li WH, Chuang TJ (2010) Gene family size conservation is a good indicator of evolutionary rates. Mol Biol Evol 27:1750–1758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng SS, Liu JY, Hsui YR, Chen WJ, Chang ST (2009) Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresour Technol 100:1457–1464

    Google Scholar 

  • Chung SH, Felton GW (2011) Specificity of induced resistance in tomato against specialist lepidopteran and coleopteran species. J Chem Ecol 37:378–386

    Article  CAS  PubMed  Google Scholar 

  • Demkura PV, Abdala G, Baldwin IT, Ballaré CL (2010) Jasmonatedependent and -independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol 152:1084–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deng CH, Zhang XM, Zhu WM, Qian J, William NH (2004) Floral fragrances as cues in animal, Gas chromatography-mass spectrometry with solid-phase microextraction method for determination of methyl salicylate and other volatile compounds in leaves of Lycopersion esculentum. Anal Bioanal Chem 378:518–522

    Article  CAS  PubMed  Google Scholar 

  • Degenhardt DC, Refi-Hind S, Stratmann JW, Loncoln DE (2010) Systemin and jasmonic acid regulate constitutive and herbivoreinduced systemic volatile emissions in tomato, Solanum lycopersicum. Phytochemistry 71:2024–2037

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, Van Beek TA, Posthumus MA, Dom BN, Van Bokhoven H, De Groot AE (1990) Isolation and identification of volatile kairomone that affects acarine predator-prey interactions: involvement of host plant in its production. J Chem Ecol 16:381–396

    Article  CAS  PubMed  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farrar RR, Barbour JD, Kennnedy GG (1989) Quantifying food consumption and growth in insects. Ann Ent Soc Am 82:593–598

    Article  Google Scholar 

  • Fortes AM, Miersch O, Lange PR, Malho R, Testillano PS, Risueno MD, Wasternack C, Pais MS (2005) Expression of allene oxide cyclase and accumulation of jasmonates during organogenic nodule formation from hop (Humulus lupulus var. Nugget) internodes. Plant Cell Physiol 46:1713–1723

    Article  CAS  PubMed  Google Scholar 

  • Gu XC, Chen JF, Xiao Y, Di P, Xuan HJ, Zhou X, Zhang L, Chen WS (2012) Overexpression of allene oxide cyclase promoted tanshinone/phenolic acid production in Salvia miltiorrhiza. Plant Cell Rep 31:2247–2259

    Article  CAS  PubMed  Google Scholar 

  • Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT (2008) Shared signals-‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol Lett 11:24–34

    PubMed  Google Scholar 

  • Handley R, Ekbom B, Agren J (2005) Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol Entomol 30:284–292

    Article  Google Scholar 

  • He Y, Fukushige H, Hildebrand DF, Gan SS (2002). Evidence supporting a role of jasmonic acid in arabidopsis leaf senescence. Plant Physiol 128:876–884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir and Tregion of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Howe GA (2004) Jasmonates as signals in the wound response. J Plant Growth Regul 23:223–237

    Article  CAS  Google Scholar 

  • Imanishi S, Hashizume K, Nakakita M, Kojima H, Matsubayashi Y, Hashimoto T, Sakagami Y, Yamada Y, Nakamura K (1998) Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol Biol 38:1101–1111

    Article  CAS  PubMed  Google Scholar 

  • Isayenkov S, Mrosk C, Stenzel I, Strack D and Hause B. Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices. Plant Physiol 2005, 139:1401–1410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang KJ, Pi Y, Hou R, Jiang LL, Sun XF, Tang KX (2009) Promotion of nicotine biosynthesis in transgenic tobacco by overexpressing allene oxide cyclase from Hyoscyamus niger. Planta 229:1057–1063

    Article  CAS  PubMed  Google Scholar 

  • Jordan KW, Nordenstam J, Lauwers GY, Rothenberger DA, Alavi K, Garwood M, Cheng LL (2009) Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Dis Colon Rectum 52:520–525

    Article  PubMed Central  PubMed  Google Scholar 

  • Kang JH, Liu GH, Shi F, Jone AD, Beaudry RM, Howe GA (2010) The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Physiol 154:262–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kessler A, Halitschke R, Baldwin IT (2004). Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Kocsis N, Amtmann M, Mednyanszky Z, Koranyl K (2002). GC-MS investigation of the aroma compound of Hungarian red paparika (Capsicum annuum) cultivars. J Food Compost Anal 15:195–203

    Article  CAS  Google Scholar 

  • Kim HJ, Fonseca JM, Choi JH, Kubota C (2007). Effect of methyl jasmonate on phenolic compounds and carotenoids of romaine lettuce (Lactuca sativa L.). J Agric Food Chem 55:10366–10372

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto K, Matsui, Ozawa R, Takabayashi J (2005). Volatile C6- aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol, 46:1093–1102

    Article  CAS  PubMed  Google Scholar 

  • Lanc BG, Wolfe KH (2004). Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  Google Scholar 

  • Martinez-Tellez MA, Lafuente MT (1997) Effects of high temperature conditioning on ethylene, phenylalanine ammonia lyase, peroxidase and polyphenol oxidase inflavedo of chilled “Fortune” mandarin fruit. J Plant Physiol 150:674–678

    Article  CAS  Google Scholar 

  • Matsuda K, Buckinghamb SD, Kleierc D, Rauh JJ, Grauso M, Sattelle DB (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22:573–580

    Article  CAS  PubMed  Google Scholar 

  • Miller B, Madilao LL, Ralph S, Bohlmann J (2005) Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol 137:369–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mustafa NR, Verpoorte R (2007) Phenolic compounds in Catharanthus roseus. Phytochem Rev 6:243–258

    Article  CAS  Google Scholar 

  • Nath DR, Das NG, Malhotra PR (2014) Efficacy of certain essential oils and insect repellents against land leeches. Defence Sci J 36:327–330

    Article  Google Scholar 

  • Neumann P, Brodhun F, Sauer K, Herrfurth C, Hamberg M, Brinkmann J, Scholz J, Dickmanns A, Feussner I, Ficner R (2012) Crystal structures of Physcomitrella patens AOC1 and AOC2: insights into the enzyme mechanism and differences in substrate specificity. Plant Physiol 160:1251–1266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Oh Y, Baldwin IT, Galis I (2012) NaJAZh regulates a subset of defense responses against herbivores and spontaneous leaf necrosis in Nicotiana attenuata plants. Plant Physiol 159:769–788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Potokina E, Prasad M, Malysheva L, Roder MS, Graner A (2006) Expression genetics and haplotype analysis reveal cis regulation of serine carboxypeptidase I (Cxp1), a candidate gene for malting quality in barley (Hordeum vulgare L.). Funct Integr Genom 6:25–35

    Article  CAS  Google Scholar 

  • Puentes A, Ågren J (2013) Trichome production and variation in young plant resistance to the specialist insect herbivore Plutella xylostella among natural populations of Arabidopsis lyrata. Entomol Exp Applic 149:166–176

    Google Scholar 

  • Ralph S, Oddy C, Coopper D, Yueh H (2006) Genomics of hybrid poplar (Populus trichocarpa × deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and fulllength cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences in poplar. Mol Ecol 15:1275–1297

    Article  PubMed  Google Scholar 

  • Rodriguez-Saona C, Crafts-Brandner SJ, Paré PW, Henneberry TJ (2001) Exogenous methyl jasmonate induces volatile emissions in cotton plants. J Chem Ecol 27:679–695

    Article  CAS  PubMed  Google Scholar 

  • Ruther J, Kleier S (2005) Plant-plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. J Chem Ecol 31:2217–2222

    Article  CAS  PubMed  Google Scholar 

  • Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47:868–876

    Article  CAS  PubMed  Google Scholar 

  • Shadle GL, Wesley SV, Korth KL, Chen F, Lamb C, Dixon RA (2003) Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of l-phenylalanine ammonia-lyase. Phytochemistry 64:153–161

    Article  CAS  PubMed  Google Scholar 

  • Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28:49–55

    CAS  Google Scholar 

  • Solé J, Sans A, Riba M, Guerrero A (2010) Behavioural and electrophysiological responses of the European corn borer Ostrinia nubilalis to host-plant volatiles and related chemicals. Physiol Entomol 35:354–363

    Article  Google Scholar 

  • Soskine M, Tawfik DS (2010) Mutational effects and the evolution of new protein functions. Nat Rev Genet 11:572–582

    Article  CAS  PubMed  Google Scholar 

  • Stenzel I, Hause B, Maucher M, Pitzschke A, Miersch O, Ziegler J, Ryan CA, Wasternack C (2003a) Allene oxide cyclase dependence of the wound response and vascular bundle specific generation of jasmonate-amplification in wound-signalling. Plant J 33:577–589

    Article  CAS  PubMed  Google Scholar 

  • Stenzel, I, Hause B, Miersch O, Kurz T, Maucher H, Weichert H, Ziegler J, Feusner I, Wasternack C (2003b) Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol Biol 51:895–911

    Article  CAS  PubMed  Google Scholar 

  • Traw MB, Bergelson J (2003) Interactive effects of jasmonicacid, salicylic acid, and gibberellinon induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walters D, Cowley T, Mitchell A (2002) Methyl jasmonter alter polyamine metabolism and induces systemic protection against poedery mildew infection in barley seedlings. J Exp Bot 53:747–756

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li H, Si Y, Zhang H, Guo H, Miao X (2012) Microarray analysis of broad-spectrum resistance derived from an indica cultivar Rathu Heenati. Planta 235:829–840

    Article  CAS  PubMed  Google Scholar 

  • Wang YL, Wang H, Fan R, Yang Q, Yu DY (2014) Transcriptome analysis of soybean lines reveals transcript diversity and genes involved in the response to common cutworm (Spodoptera litura Fabricius) feeding. Plant Cell Environ 37:2086–2101

    Article  CAS  PubMed  Google Scholar 

  • Weber H, Vick BA, Farmer EE (1997) Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci USA 94:10473–10478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  CAS  PubMed  Google Scholar 

  • Wu JJ, Wu Q, Wu QJ, Yu DY (2008) Constitutive overexpression of AOS-like gene from soybean enhanced tolerance to insect attack in transgenic tobacco. Biotechnol Lett 30:1693–1698

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Wu JJ, Sun HJ, Zhang D, Wang H, Yu DY (2011) Sequence and expression divergence of the AOC gene family in soybean: insights into functional diversity for stress responses. Biotechnol Lett 33:1351–1359

    Article  CAS  PubMed  Google Scholar 

  • Xu BF, Timko M (2004) Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both Gbox and GCC-motif elements. Plant Mol Biol 55:743–761

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Sano R, Wada T, Taksbayashi J, Okada K (2009) Jasmonic acid control of GLABR3 links inducible defense and trichome patterning in Arabidopsis. Development 136:1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Zhang HQ, Mao JJ, Liu FJ, Zeng FR (2012) Expression of a nematode symbiotic bacterium-derived protease inhibitor protein in tobacco enhanced tolerance against Myzus persicae. Plant Cell Rep 31:1981–1989

    Article  CAS  PubMed  Google Scholar 

  • Ziegler J, Stenzel I, Hause B, Maucher H, Hamberg M, Grimm R, Ganal M, Wasternack C (2000) Molecular cloning of allene oxide cyclase: the enzyme establishing the stereochemistry of octadecanoid and jasmonates. J Biol Chem 27:19132–19138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyue Yu.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Wang, H., Wu, J. et al. Soybean GmAOC3 promotes plant resistance to the common cutworm by increasing the expression of genes involved in resistance and volatile substance emission in transgenic tobaccos. J. Plant Biol. 58, 242–251 (2015). https://doi.org/10.1007/s12374-015-0072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-015-0072-2

Keywords

Navigation