Skip to main content
Log in

Genome-Wide Analysis of Genes Induced by Fusarium graminearum Infection in Resistant and Susceptible Wheat Cultivars

  • ORIGINAL RESEARCH
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most serious diseases in wheat (Triticum aestivum) and barley (Hordeum vulgare). Dahongmil is an elite Korean wheat cultivar with relatively high resistance to FHB. To identify differentially expressed genes in the resistant cultivar Dahongmil and the susceptible cultivar Urimil after inoculation of F. graminearum, we used the Affymetrix GeneChip® Wheat Genome Array to identify 328 ESTs that were differentially expressed in inoculated seedling tissues of the two cultivars. From these, we selected 16 induced genes and found that they have defense functions, such as genes encoding pathogen resistance proteins, oxidative stress-related proteins, metabolism, and proteins involved in defense mechanisms. To verify the DNA microarray results, we tested seven of these genes by semiquantitative RT-PCR and confirmed that these defense- and stress-related genes were expressed at much higher levels in the resistant Dahongmil cultivar. We next developed a hypothetical functional gene network and identified 89 interaction pairs mediated by four of the differentially expressed genes in the hypothetical network. We further refined the network by identifying nine genes showing significant up- or down-regulation after FHB challenge in the resistant cultivar and two genes having multiple interactions with queried proteins. We hope that the set of induced genes identified in this study can be used for development of new wheat and barley cultivars with improved resistance to FHB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bai G, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161

    Article  PubMed  CAS  Google Scholar 

  • Ban T, Suenaga K (2000) Genetic analysis of resistance to Fusarium head blight caused by Fusarium graminearum in Chinese wheat cultivar Sumai 3 and the Japanese cultivar Saikai 165. Euphytica 113:87–99

    Article  Google Scholar 

  • Bowden RL, Leslie JF (1999) Sexual reproduction in Gibberella zeae. Phytopathology 89:182–188

    Article  PubMed  CAS  Google Scholar 

  • Desmond OJ, Edgar CI, Manners JM, Maclean DJ, Schenk PM, Kazan K (2005) Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium pseudograminearum. Physiol Mol Plant Pathol 67:171–179

    Article  CAS  Google Scholar 

  • Desmond OJ, Manners JM, Stephens AE, Maclean DJ, Schenk PM, Gardiner DM (2008) The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defense responses in wheat. Mol Plant Pathol 9:435–445

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Foroud NA, Eudes F (2009) Trichothecenes in cereal grains. Int J Mol Sci 10:147–173

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    PubMed  CAS  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  PubMed  CAS  Google Scholar 

  • Guldener U, Seong KY, Boddu J, Cho S, Trail F, Xu JR, Adam G, Mewes HW, Muehlbauer GJ, Kistler HC (2006) Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genet Biol 43:316–325

    Article  PubMed  Google Scholar 

  • Ha YW, Lee SY, Song HS, Heu HY, Nam JH, Sung BR (1992) New early maturing, semi-dwarf, lodging resistant, high yielding and good quality soft wheat variety Urimil. Res Rept RDA 34:1–4 (in Korean)

    Google Scholar 

  • Hancock JT, Desikan R, Clarke A, Hurst RD, Neill SJ (2002) Cell signalling following plant/pathogen interactions involves the generation of reactive oxygen and reactive nitrogen species. Plant Physiol Biochem 40:611–617

    Article  CAS  Google Scholar 

  • Harris SD (2005) Morphogenesis in germinating Fusarium graminearum macroconidia. Mycologia 97:880–887

    Article  PubMed  Google Scholar 

  • Hwang IS, Hwang BK (2011) The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiol 155:447–463

    Article  PubMed  CAS  Google Scholar 

  • Joshi CP, Chiang VL (1998) Conserved sequence motifs in plant S-adenosyl-l-methionine-dependent methyltransferases. Plant Mol Biol 37:663–674

    Article  PubMed  CAS  Google Scholar 

  • Jung KH, Jeon JS, An G (2011) Web tools for rice transcriptome analyses. J Plant Biol 54:65–80

    Article  CAS  Google Scholar 

  • Kolomiets MV, Chen H, Richard J, Gladon RJ, Braun EJ, Hannapel DJ (2000) A leaf lipoxygenase of potato induced specifically by pathogen infection. Plant Physiol 3:1121–1130

    Article  Google Scholar 

  • Kong L, Anderson JM, Ohm HW (2005) Induction of wheat defense and stress-related genes in response to Fusarium graminearum. Genome 48:29–40

    Article  PubMed  CAS  Google Scholar 

  • Kumar J, Huckelhoven R, Beckhove U, Nagarajan S, Kogel KH (2001) A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (Teleomorph: Cochliobolus sativus) and its toxins. Phytopathology 91:127–133

    Article  PubMed  CAS  Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell, UK

    Book  Google Scholar 

  • Mauch F, Dudler R (1993) Differential induction of distinct glutathione-S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol 102:1193–1201

    Article  PubMed  CAS  Google Scholar 

  • Morant M, Bak S, Moller BL, Werck-Reichhart D (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotech 14:151–162

    Article  PubMed  CAS  Google Scholar 

  • Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11

    Article  PubMed  Google Scholar 

  • Park RK, Suh HS, Lee BH, Suh DY (1980) New wheat variety ‘Milyang 7’. Res Rept RDA 22:114–119 (in Korean)

    Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Petsch KA, Mylne J, Botella R (2005) Cosuppression of eukaryotic release factor 1–1 in Arabidopsis affects cell elongation and radial cell division. Plant Physiol 139:115–126

    Article  PubMed  CAS  Google Scholar 

  • Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Güldener U, Mannhaupt G, Münsterkötter M, Mewes HW (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 32:5539–5545

    Article  PubMed  CAS  Google Scholar 

  • Rusterucci C, Montillet JL, Agnel JP, Battesti C, Alonso B, Knoll A, Bessoule JJ, Etienne P, Suty L, Blein JP, Triantaphylides C (1999) Involvement of lipoxygenase-dependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death induced by cryptogein on tobacco leaves. J Biol Chem 274:36446–36455

    Article  PubMed  CAS  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuyn M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) A free open-source system for microarray data management and analysis. Biotechniques 34:374–378

    PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91(phox) NADPH oxidase: modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Wachtler B, Temp U, Krekling T, Seguin A, Gershenzon J (2010) A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol 152:639–655

    Article  PubMed  CAS  Google Scholar 

  • Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat scab caused by Gibberella zeae. Phytopathology 53:831–838

    Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  CAS  Google Scholar 

  • Sutton JC (1982) Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Plant Pathol 4:195–209

    Google Scholar 

  • Trail F, Xu H, Loranger J, Gadoury D (2002) Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum). Mycologia 94:181–189

    Article  PubMed  Google Scholar 

  • Wang L, Pei Z, Tian Y, He C (2004) OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microbe Interact 5:375–384

    Google Scholar 

  • Wirdnam C, Motoyama A, Arn-Bouldoires E, Eeden S, Iglesias A, Meins F (2004) Altered expression of an ankyrin-repeat protein results in leaf abnormalities, necrotic lesions, and the elaboration of a systemic signal. Plant Mol Biol 56:717–730

    Article  PubMed  CAS  Google Scholar 

  • Zwart RS, Muylle H, Bockstaele EV, Ruiz IR (2008) Evaluation of genetic diversity of Fusarium head blight resistance in European winter wheat. Theor Appl Genet 117:813–828

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of Cooperative Research Program for Agriculture Science & Technology Development (PJ006662), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Chon Paek.

Additional information

Sung-Hwan Cho, Jungkwan Lee, and Ki-Hong Jung contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Interaction network mediated by 89 up- and down-regulated genes in response to F. graminearum inoculation using the Cytoscape program (version 2.7). Green nodes indicate down-regulation in Dahongmil and red nodes indicate up-regulation. (JPEG 1773 kb)

ESM Table S1

(DOCX 27 kb)

ESM Table S2

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, SH., Lee, J., Jung, KH. et al. Genome-Wide Analysis of Genes Induced by Fusarium graminearum Infection in Resistant and Susceptible Wheat Cultivars. J. Plant Biol. 55, 64–72 (2012). https://doi.org/10.1007/s12374-011-9190-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-011-9190-7

Keywords

Navigation