Skip to main content
Log in

Genetic and Phenotypic Analysis of lax1-6, a Mutant Allele of LAX PANICLE1 in Rice

  • Original Research
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Proper function of the LAX1 gene is required for the development of axillary meristem in rice. Here, we report genetic and phenotypic characters of a novel recessive mutant allele of rice LAX1 gene, lax1-6, which showed abnormal panicle phenotypes with few numbers of elongated primary rachis branches. Beside typical lax mutant phenotype, abnormalities of lax1-6 mutant allele were observed with defect lemma and palea primordial in floral organs. The lax1-6 mutant locus was linked between SSR markers RM7594 and RM5389 on chromosome 1 with 1.02% and 1.0% recombination frequencies, respectively. Molecular analysis revealed that the lax1-6 mutant allele was caused by a transversion mutation of nucleotide T to G substitution that resulted in an amino acid substitution from serine (S) to alanine (A) at the 117th position from amino terminus of a basic helix-loop-helix protein coded by LAX1 gene. Furthermore, we found that the Oryza sativa indica type cv. IRRI347 contained 24 nucleotide deletion in the upstream sequence in the LAX1 gene, but this deletion did not influence panicle morphology, which demonstrated that the deletion is a polymorphism in rice. All together, the lax1-6 mutant is a newly identified allele of LAX1 gene displaying the abnormal axillary meristems and inflorescences in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal GK, Abe K, Yamazaki M, Miyao A, Hirochika H (2005) Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Mol Biol 59:125–135

    Article  PubMed  CAS  Google Scholar 

  • Araki T (2001) Transition from vegetative to reproductive phase. Curr Opin Plant Biol 4:63–68

    Article  PubMed  CAS  Google Scholar 

  • Bommert P, Sato-Nagasawa N, Jackson D, Hirano HY (2005) Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol 46:69–78

    Article  PubMed  CAS  Google Scholar 

  • Bortiri E, Hake S (2007) Flowering and determinacy in maize. J Exp Bot 58:909–916

    Article  PubMed  CAS  Google Scholar 

  • Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    PubMed  CAS  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298:1238–1241

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Meyerowltz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Nugent J (1994) Evolution of flowers and inflorescences. Dev Suppl 120:107–116

    Google Scholar 

  • Ellenberger T, Fass D, Arnaud M, Harrison SC (1994) Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev 8:970–980

    Article  PubMed  CAS  Google Scholar 

  • Furutani I, Sukegawa S, Kyozuka J (2006) Genome-wide analysis of spatial and temporal gene expression in rice panicle development. Plant J 46:503–511

    Article  PubMed  CAS  Google Scholar 

  • Gallione CJ, Rose JK (1985) A single amino acid substitution in a hydrophobic domain causes temperature-sensitive cell-surface transport of a mutant viral glycoprotein. J Virol 54:374–382

    PubMed  CAS  Google Scholar 

  • Hong SY, Oh JE, Lee KH (1999) Effect of d-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem Pharm 58:1775–1780

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP (2007) F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143:1467–1483

    Article  PubMed  CAS  Google Scholar 

  • Jeon JS, Lee S, An G (2008) Intragenic control of expression of a rice MADS box gene OsMADS1. Mol Cells 26:474–480

    PubMed  CAS  Google Scholar 

  • Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G (2005) Rice undeveloped tapetum1 is a major regulator of early tapetum development. Plant Cell 17:2705–2722

    Article  PubMed  CAS  Google Scholar 

  • Kang HG, An G (1997) Isolation and characterization of a rice MADS box gene belonging to the AGL2 gene family. Mol Cells 7:45–51

    PubMed  CAS  Google Scholar 

  • Kang SG, Hannapel DJ, Suh SG (2003) Potato MADS-box gene POTM1-1 transcripts are temporally and spatially distributed in floral organs and vegetative meristems. Mol Cells 15:48–54

    PubMed  CAS  Google Scholar 

  • Kaur P, Larson SR, Shaun Bushman B, Wang RR, Mott IW, Hole D, Thimmapuram J, Gong G, Liu L (2008) Genes controlling plant growth habit in Leymus (Triticeae): maize barren stalk1 (ba1), rice lax panicle, and wheat tiller inhibition (tin3) genes as possible candidates. Funct Integr Genomics 8:375–386

    Article  PubMed  CAS  Google Scholar 

  • Kellogg EA (2007) Floral displays: genetic control of grass inflorescence. Curr Opin Plant Biol 10:26–31

    Article  PubMed  CAS  Google Scholar 

  • Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S (1997) Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124:3045–3054

    PubMed  CAS  Google Scholar 

  • Kiribuchi K, Jikumaru Y, Kaku H, Minami E, Hasegawa M, Kodama O, Seto H, Okada K, Nojiri H, Yamane H (2005) Involvement of the basic helix-loop-helix transcription factor RERJ1 in wounding and drought stress responses in rice plants. Biosci Biotechnol Biochem 69:1042–1044

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J (2010) PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol 51:47–57

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Maekawa M, Shimamoto K, Kyozuka J (2001) The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol 231:364–373

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Chujo A, Natago Y, Shimamoto K, Kyozuka J (2003) Frizzy panicle is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841–3850

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahmson J, Barloe A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lee DY, Lee J, Moon S, Park SY, An G (2006) The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J 49:64–78

    Article  PubMed  Google Scholar 

  • Levy YY, Dean C (1998) The transition to flowering. Plant Cell 10:1973–1990

    Article  PubMed  CAS  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000) JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406:910–913

    Article  PubMed  CAS  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xin Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClarck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  PubMed  CAS  Google Scholar 

  • McSteen P, Hake S (2001) Barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development 128:2881–2891

    PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4325

    Google Scholar 

  • Nagato Y, Yoshimura A (1998) Report of committee on gene symbolization, nomenclature and linkage map. Rice Genet Newsl 15:13–74

    Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878

    Article  PubMed  CAS  Google Scholar 

  • Oikawa T, Kyozuka J (2009) Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. Plant Cell 21:1095–1108

    Article  PubMed  CAS  Google Scholar 

  • Prasad K, Parameswaran S, Vijayraghavan U (2005) OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J 43:915–928

    Article  PubMed  CAS  Google Scholar 

  • Rao NN, Prasad K, Kumar PR, Vijayraghavan U (2008) Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci U S A 105:3646–3651

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto W, Ohmori T, Kageyama K, Miyazaki C, Saito A (2001) The Purple leaf (Pl) locus of rice: the Pl w allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis. Plant Cell Physiol. 42:982-991

    Google Scholar 

  • Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441:227–230

    Article  PubMed  CAS  Google Scholar 

  • Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931–936

    Article  PubMed  CAS  Google Scholar 

  • Sentoku N, Kato H, Kitano H, Imai R (2005) OsMADS22, an STMADS11-like MADS-box gene of rice, is expressed in non-vegetative tissues and its ectopic expression induces spikelet meristem indeterminacy. Mol Gen Genomics 273:1–9

    Article  CAS  Google Scholar 

  • Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469–471

    Article  PubMed  CAS  Google Scholar 

  • Vissing H, D'Alessio M, Lee B, Ramirez F, Godfrey M, Hollister DW (1989) Glycine to serine substitution in the triple helical domain of pro-alpha 1 (II) collagen results in a lethal perinatal form of short-limbed dwarfism. J Biol Chem 264:18265–18267

    PubMed  CAS  Google Scholar 

  • Vollbrecht E, Springer PS, Goh L, Buckler ES IV, Martienssen R (2005) Architecture of floral branch systems in maize and related grasses. Nature 436:1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Yin H, Qian Q, Yang J, Huang C, Hu X, Luo D (2009) NECK LEAF 1, a GATA type transcription factor, modulates organogenesis by regulating the expression of multiple regulatory genes during reproductive development in rice. Cell Res 19:598–611

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Gao X, Li L, Shi X, Zhang J, Shi Z (2010) Overexpression of Osta-siR2141 caused abnormal polarity establishment and retarded growth in rice. J Exp Bot 61:1885–1895

    Article  PubMed  CAS  Google Scholar 

  • Weberling F (1992) Morphology of flowers and inflorescences. Cambridge Univ. Press, Cambridge, p 405

    Google Scholar 

  • Weigel D (1995) The genetics of flower development: from floral induction to ovule morphogenesis. Annu Rev Genet 29:19–39

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi J, Miyamoto N, Hirotsu S, Laza RC, Nemoto K (2004) QTLs for branching, floret formation, and pre-flowering floret abortion of rice panicle in a temperate japonica × tropical japonica cross. Theor Appl Genet 109:1555–1561

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T (2001) Genetic control of flowering time in rice, a short-day plant. Plant Physiol 127:1425–1429

    Article  PubMed  CAS  Google Scholar 

  • Yi G, Choi JH, Jeong EG, Chon NS, Jena KK, Ku YC, Kim DH, Eun MY, Jeon JS, Nam MH (2005) Morphological and molecular characterization of a new frizzy panicle mutant, “fzp-9(t)”, in rice (Oryza sativa L.). Hereditas 142:92–97

    Article  PubMed  Google Scholar 

  • Zhu QH, Hoque MS, Dennis ES, Upadhyaya NM (2003) Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L). BMC Plant Biol 3:6–19

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Suh Hak Soo at Yeungnam University for his assistance. This work was supported by a Yeungnam University Research Grant (208-A-356-041) in 2008 to professor Sang Gu Kang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Gu Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matin, M.N., Kang, S.G. Genetic and Phenotypic Analysis of lax1-6, a Mutant Allele of LAX PANICLE1 in Rice. J. Plant Biol. 55, 50–63 (2012). https://doi.org/10.1007/s12374-011-9189-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-011-9189-0

Keywords

Navigation