Skip to main content
Log in

Detection of Reactive Oxygen Species in Higher Plants

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Formed during the reduction of molecular oxygen or water oxidation, reactive oxygen species (ROS) are produced by a variety of enzymes and redox reactions in almost every compartment of the plant cell. In addition to causing cellular damage, these ROS play a role in signaling networks. Many factors contribute to and, simultaneously, control their metabolism, and it is difficult to detect individual ROS accurately. This is due to several challenges inherent to ROS—their relatively short half-lives, low intracellular concentrations, enzymatic and non-enzymatic scavenging capacity of the cells, and the absence of absolutely selective probes for ROS. Here, we describe the common approaches taken for detecting primary ROS, singlet oxygen, superoxide, and hydrogen peroxide as we discuss their advantages and limitations. We can conclude that using two or more independent methods that yield similar results for detection is a reliable means for studying ROS in intact plant tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afanas’ev IB (2001) Lucigenin chemiluminescence assay for superoxide detection. Circ Res 89:E46

    PubMed  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Topics in photosynthesis, photoinhibition, vol 9. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  • Auclair C, Voisin E (1985) Nitro blue tetrazolium reduction. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. CRC, Boca Raton, pp 123–132

    Google Scholar 

  • Azzi A, Montecucco C, Richter C (1975) The use of acetylated ferricytochrome c for the detection of superoxide radicals produced in biological membranes. Biochem Biophys Res Commun 65:597–603

    Article  PubMed  CAS  Google Scholar 

  • Benov L, Sztejnberg L, Fridovich I (1998) Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic Biol Med 25:826–831

    Article  PubMed  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed  CAS  Google Scholar 

  • Boveris A (1984) Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Meth Enzymol 105:429–435

    Article  PubMed  CAS  Google Scholar 

  • Boveris A, Martino E, Stoppani AO (1977) Evaluation of the horseradish peroxidase–scopoletin method for the measurement of hydrogen peroxide formation in biological systems. Anal Biochem 80:145–158

    Article  PubMed  CAS  Google Scholar 

  • Cleland RE, Grace SC (1999) Voltammetric detection of superoxide production by photosystem II. FEBS Lett 457:348–352

    Article  PubMed  CAS  Google Scholar 

  • Dambrova M, Baumane L, Kalvinsh I, Wikberg JE (2000) Improved method for EPR detection of DEPMPO-superoxide radicals by liquid nitrogen freezing. Biochem Biophys Res Commun 275:895–898

    Article  PubMed  CAS  Google Scholar 

  • Dikalov S, Skatchkov M, Bassenge E (1997) Spin trapping of superoxide radicals and peroxynitrite by 1-hydroxy-3-carboxy-pyrrolidine and 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine and the stability of corresponding nitroxyl radicals towards biological reductants. Biochem Biophys Res Commun 231:701–704

    Article  PubMed  CAS  Google Scholar 

  • Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullineaux PM, Nonell S, Wilson MT, Baker NR (2006) Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green. J Exp Bot 57:1725–1734

    Article  PubMed  CAS  Google Scholar 

  • Földes T, Čermák P, Macko M, Veis P, Macko P (2009) Cavity ring-down spectroscopy of singlet oxygen generated in microwave plasma. Chem Phys Lett 467:233–236

    Article  Google Scholar 

  • Foyer CH, Noctor G (1999) Leaves in the dark see the light. Science 284:599–601

    Article  PubMed  CAS  Google Scholar 

  • Frejaville C, Karoui H, Tuccio B, le Moigne F, Culcasi M, Pietri S, Lauricella R, Tordo P (1995) 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide: a new efficient phosphorylated nitrone for the in vitro and in vivo spin trapping of oxygen-centered radicals. J Med Chem 38:258–265

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1997) Superoxide anion radical (O2), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517

    Article  PubMed  CAS  Google Scholar 

  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53:1249–1254

    Article  PubMed  CAS  Google Scholar 

  • Geerts A, Roels F (1981) Quantitation of catalase activity by microspectrophotometry after diaminobenzidine staining. Histochem Cell Biol 72:357–367

    Article  CAS  Google Scholar 

  • Georgiou AD, Papapostolou I, Patsoukis N, Tsegenidis T, Sideris T (2005) An ultrasensitive fluorescent assay for the in vivo quantification of superoxide radical in organisms. Anal Biochem 347:144–151

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutterdge JMC (1989) Free radicals in biology and medicine. Clarendon, Oxford

    Google Scholar 

  • Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′7′-dichlorodihydrofluorescein diacetate, 5 (and 6)-carboxy-2′7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radical Bio Med 270:146–159

    Article  Google Scholar 

  • Hideg É, Kálai T, Hideg K, Vass I (1998) Photoinhibition of photosynthesis in vivo results in singlet oxygen production: detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry 37:11405–11411

    Article  PubMed  CAS  Google Scholar 

  • Hideg É, Barta C, Kálai T, Vass I, Hideg K, Asada K (2002) Detection of singlet oxygen and superoxide with fluorescent sensors in leaves under stress by photoinhibition or UV radiation. Plant Cell Physiol 43:1154–1164

    Article  PubMed  CAS  Google Scholar 

  • Hideg E, Kálai T, Kós PB, Asada K, Hideg K (2006) Singlet oxygen in plants—its significance and possible detection with double (fluorescent and spin) indicator reagents. Photochem Photobiol 82:1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Hinkle PC, Butow RA, Racker E, Chance B (1967) Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles. J Biol Chem 242:5169–5173

    PubMed  CAS  Google Scholar 

  • Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57:231–245

    Article  PubMed  CAS  Google Scholar 

  • Janiszewski M, Souza HP, Liu X, Pedro MA, Zweier JL, Laurindo FR (2002) Overestimation of NADH-driven vascular oxidase activity due to lucigenin artifacts. Free Radic Biol Med 32:446–453

    Article  PubMed  CAS  Google Scholar 

  • Kariola T, Brader G, Li J, Palva ET (2005) Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell 17:282–294

    Article  PubMed  CAS  Google Scholar 

  • Kearns DR (1971) Physical and chemical properties of singlet molecular oxygen. Chem Rev 71:395–427

    Article  CAS  Google Scholar 

  • Keren N, Berg A, van Kann PJM, Levanon H, Ohad I (1997) Mechanism of photosystem II inactivation and D1 protein degradation at low light: the role of back electron flow. Proc Natl Acad Sci USA 94:1579–1584

    Article  PubMed  CAS  Google Scholar 

  • Keston AS, Brandt R (1965) The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 11:1–5

    Article  PubMed  CAS  Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signaling: the latest news. Curr Opin Plant Biol 7:323–328

    Article  PubMed  CAS  Google Scholar 

  • Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–1209

    PubMed  CAS  Google Scholar 

  • Lion Y, Delmelle M, van de Vorst A (1976) New method of detecting singlet oxygen production. Nature 263:442–443

    Article  PubMed  CAS  Google Scholar 

  • Lvovich V, Scheeline A (1997) Amperometric sensors for simultaneous superoxide and hydrogen peroxide detection. Anal Chem 69:454–462

    Article  PubMed  CAS  Google Scholar 

  • Mahalingam R, Jambunathan N, Gunjan SK, Faustin E, Weng H, Ayoubi P (2006) Analysis of oxidative signaling induced by ozone in Arabidopsis thaliana. Plant Cell Environ 29:1357–1371

    Article  PubMed  CAS  Google Scholar 

  • Mahler H, Wuennenberg P, Linder M, Przybyla D, Zoerb C, Langraf F, Forreiter C (2007) Singlet oxygen affects the activity of the thylakoid ATP synthase and has a strong impact on its γ subunit. Planta 225:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Makino K, Hagiwara T, Hagi A, Nishi M, Murakami A (1990) Cautionary note for DMPO spin trapping in the presence of iron ion. Biochem Biophys Res Commun 172:1073–1080

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I (1968) The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem 243:5753–5760

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem V (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Nakano M (1990) Assay for superoxide dismutase based on chemiluminescence of luciferin analog. Meth Enzymol 186:227–232

    Article  PubMed  CAS  Google Scholar 

  • Nappy AJ, Vass E (2000) Hydroxyl radical production by ascorbate and hydrogen peroxide. Neurotoxicity Res 2:343–355

    Article  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  PubMed  CAS  Google Scholar 

  • Peshavariya HM, Dusting GG, Selemidis S (2007) Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radical Res 41:699–712

    Article  CAS  Google Scholar 

  • Pospíšil P, Šnyrychova I, Kruk J, Strzałka K, Nauš J (2006) Evidence that cytochrome b559 is involved in superoxide production in photosystem II: effect of synthetic short-chain plastoquinone in a cytochrome b559 tobacco mutant. Biochem J 397:321–327

    Article  PubMed  Google Scholar 

  • Ragàs X, Jiménez-Banzo A, Sánchez-Garcıá D, Batllori X, Nonell S (2009) Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green. Chem Commun 20:2920–2922

    Article  Google Scholar 

  • Robinson KM, Janes MS, Pehaf M, Monette JS, Ross MF, Hagen TM, Murphy MP, Beckman JS (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci USA 103:15038–15043

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1757

    Article  PubMed  CAS  Google Scholar 

  • Sies H (1981) Measurements of hydrogen peroxide formation in situ. Meth Enzymol 77:15–20

    Article  PubMed  CAS  Google Scholar 

  • Sonoike K (2006) Photoinhibition and protection of photosystem I. In: Golbeck GH (ed) Photosystem I: the plastocyanin: ferredoxin oxidoreductase in photosynthesis. Springer, Dordrecht, pp 657–668

    Google Scholar 

  • Staniek K, Nohl H (1999) H2O2 detection from intact mitochondria as a measure for one-electron reduction of dioxygen requires a non-invasive assay system. Biochim Biophys Acta 1413:70–80

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Kobayashi F, Isogai Y, Iizuka T (1991) Electrochemical determination of superoxide anions generated from a single neutrophil. Bioelectrochem Bioenerg 26:413–421

    Article  CAS  Google Scholar 

  • Tarpey MM, Fridovich I (2001) Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 89:224–236

    Article  PubMed  CAS  Google Scholar 

  • Telfer A, Bishop SM, Phillips D, Barber J (1994) Isolated photosynthetic reaction-center of photosystem-II as a sensitizer for the formation of singlet oxygen—detection and quantum yield determination using a chemical trapping technique. J Biol Chem 269:13244–13253

    PubMed  CAS  Google Scholar 

  • Thomson L, Trujillo M, Telleri R, Radi R (1995) Kinetics of cytochrome c2+ oxidation by peroxynitrite: implications for superoxide measurements in nitric oxide-producing biological systems. Arch Biochem Biophys 319:491–497

    Article  PubMed  CAS  Google Scholar 

  • Trebst A (2003) Function of β-carotene and tocopherol in photosystem II. Z Naturforsch 58c:609–620

    Google Scholar 

Download references

Acknowledgments

This work was supported for 2 years by a Pusan National University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon-Hwan Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zulfugarov, I.S., Tovuu, A., Kim, JH. et al. Detection of Reactive Oxygen Species in Higher Plants. J. Plant Biol. 54, 351–357 (2011). https://doi.org/10.1007/s12374-011-9177-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-011-9177-4

Keywords

Navigation