Skip to main content
Log in

A salt stress-activated mitogen-activated protein kinase in soybean is regulated by phosphatidic acid in early stages of the stress response

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Salt stress inhibits plant growth and development and plants activate kinase-dependent survival pathways in response to salt stress. However, the role of soybean mitogenactivated protein kinases (MAPKs) in salt stress response has yet to be characterized. In this study, we found that salt stress activates Glycine max MAP kinase 1 (GMK1), a soybean MAPK. The activity of GMK1 induced with increasing salt concentrations, up to 300 mM NaCl, after 5 min of the treatment and was regulated by post-translational modification. We found that mastoparan, a heteromeric G-protein activator, also activated GMK1, and that n-butanol, a phospholipase D inhibitor, and neomycin, a phospholipase C inhibitor, inhibited its activity. Moreover, GMK1 activity was reduced by suramin, a heteromeric G-protein inhibitor, and by two inhibitors of phosphatidic acid (PA) generation after 5 min of 300 mM NaCl treatment. Endogenous PA levels were highest 5 min after induction of salt stress, and exogenous PA directly activated GMK1. From these data, we propose that salt stress signaling is transduced from heteromeric G-protein to GMK1 via phospholipases in the early stages of the response to salt stress in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anstatt C, Tenhaken R (2003) A mitogen-activated-protein kinase from soybean is activated by a pathogen and novel functional analogs of salicylic acid. Plant Physiol Bioch 41:929–934

    Article  CAS  Google Scholar 

  • Balestrasse KB, Zilli CG, Tomaro ML (2008) Signal transduction pathways and haem oxygenase induction in soybean leaves subjected to salt stress. Redox Rep 13:255–262

    Article  PubMed  CAS  Google Scholar 

  • Bargmann BO, Laxalt AM, ter Riet B, van Schooten B, Merquiol E, Testerink C, Haring MA, Bartels D, Munnik T (2009) Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol 50:78–89

    Article  PubMed  CAS  Google Scholar 

  • Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125:1075–1080

    PubMed  CAS  Google Scholar 

  • Daxberger A, Nemak A, Mithofer A, Fliegmann J, Ligterink W, Hirt H, Ebel J (2007) Activation of members of a MAPK module in beta-glucan elicitor-mediated non-host resistance of soybean. Planta 225:1559–1571

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Laxalt AM, Goedhart J, Gadella TWJ, Munnik T (2003) Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15:2666–2679

    Article  PubMed  CAS  Google Scholar 

  • Higashijima T, Uzu S, Nakajima T, Ross EM (1988) Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G-proteins). J Biol Chem 263:6491–6494

    PubMed  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    Article  PubMed  CAS  Google Scholar 

  • Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93:11274–11279

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Kim J, Im JH, Kim HB, Oh CJ, An CS (2008) Mitogenactivated protein kinase is involved in the symbiotic interaction between Bradyrhizobium japonicum USDA110 and soybean. J Plant Biol 51:291–296

    Article  CAS  Google Scholar 

  • Lee S, Hirt H, Lee Y (2001) Phosphatidic acid activates a woundactivated MAPK in Glycine max. Plant J 26:479–486

    Article  PubMed  CAS  Google Scholar 

  • Legendre L, Yueh YG, Crain R, Haddock N, Heinstein PF, Low PS (1993) Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem 268:24559–24563

    PubMed  CAS  Google Scholar 

  • Lieberherr D, Thao NP, Nakashima A, Umemura K, Kawasaki T, Shimamoto K (2005) A sphingolipid elicitor-inducible mitogenactivated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice. Plant Physiol 138:1644–1652

    Article  PubMed  CAS  Google Scholar 

  • Liu JZ, Horstman HD, Braun E, Graham MA, Zhang C, Navarre D, Qiu WL, Lee Y, Nettleton D, Hill JH, Whitham SA (2011) Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development. Plant Physiol 157:1363–1378

    Article  PubMed  CAS  Google Scholar 

  • Miles GP, Samuel MA, Ellis BE (2002) Suramin inhibits oxidant signalling in tobacco suspension-cultured cells. Plant Cell Environ 25:521–527

    Article  CAS  Google Scholar 

  • Miles GP, Samuel MA, Jones AM, Ellis BE (2004) Mastoparan rapidly activates plant MAP kinase signaling independent of heterotrimeric G proteins. Plant Physiol 134:1332–1336

    Article  PubMed  CAS  Google Scholar 

  • Munnik T (2001) Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci 6:227–233

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Ligterink W, Meskiene I, Calderini O, Beyerly J, Musgrave A, Hirt H (1999) Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J 20:381–388

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Meijer HJG, ter Riet B, Hirt H, Frank W, Bartels D, Musgrave A (2000) Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J 22:147–154

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Olivier S, Formento P, Fischel JL, Etienne MC, Milano G (1990) Epidermal growth-factor receptor expression and suramin cytotoxicity in vitro. Eur J Cancer 26:867–871

    Article  PubMed  CAS  Google Scholar 

  • Pingret JL, Journet EP, Barker DG (1998) Rhizobium nod factor signaling. Evidence for a G protein-mediated transduction mechanism. Plant Cell 10:659–672

    PubMed  CAS  Google Scholar 

  • Ross EM, Higashijima T (1994) Regulation of G-protein activation by mastoparans and other cationic peptides. Methods Enzymol 237:26–37

    Article  PubMed  CAS  Google Scholar 

  • Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y (1995) Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270:1988–1992

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Miwa H, Downie JA, Oldroyd GED (2007) Mastoparan activates calcium spiking analogous to nod factor-induced responses in Medicago truncatula root hair cells. Plant Physiol 144:695–702

    Article  PubMed  CAS  Google Scholar 

  • Taylor AT, Kim J, Low PS (2001) Involvement of mitogen-activated protein kinase activation in the signal-transduction pathways of the soya bean oxidative burst. Biochem J 355:795–803

    PubMed  CAS  Google Scholar 

  • Ullah H, Chen JG, Temple B, Boyes DC, Alonso JM, Davis KR, Ecker JR, Jones AM (2003) The beta-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell 15:393–409

    Article  PubMed  CAS  Google Scholar 

  • Welti R, Li WQ, Li MY, Sang YM, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang XM (2002) Profiling membrane lipids in plant stress responses — Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002

    Article  PubMed  CAS  Google Scholar 

  • Yamagata H, Saka K, Tanaka T, Aizono Y (2001) Light activates a 46-kDa MAP kinase-like protein kinase in soybean cell culture. FEBS Lett 494:24–29

    Article  PubMed  CAS  Google Scholar 

  • Yamamizo C, Kuchimura K, Kobayashi A, Katou S, Kawakita K, Jones JDG, Doke N, Yoshioka H (2006) Rewiring mitogenactivated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol 140:681–692

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773

    Article  PubMed  CAS  Google Scholar 

  • Zhang AY, Jiang MY, Zhang JH, Tan MP, Hu XL (2006) Mitogenactivated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141:475–487

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Klessig DF (2000) Pathogen-induced MAP kinases in tobacco. Results Probl Cell Differ 27:65–84

    PubMed  CAS  Google Scholar 

  • Zhang W, Wang C, Qin C, Wood T, Olafsdottir G, Welti R, Wang X (2003) The oleate-stimulated phospholipase D, PLDdelta, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15:2285–2295

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Sun An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Im, J.H., Lee, H., Kim, J. et al. A salt stress-activated mitogen-activated protein kinase in soybean is regulated by phosphatidic acid in early stages of the stress response. J. Plant Biol. 55, 303–309 (2012). https://doi.org/10.1007/s12374-011-0036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-011-0036-8

Keywords

Navigation