Skip to main content
Log in

Heterologous Expression of a Gibberellin 2-Oxidase Gene from Arabidopsis thaliana Enhanced the Photosynthesis Capacity in Brassica napus L.

  • Original Research
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Gibberellins (GAs) are endogenous hormones that play an important role in regulating plant stature by increasing cell division and promoting seed germination. The GA2-oxidase gene from Arabidopsis thaliana (AtGA2ox8) was introduced into Brassica napus L. by Agrobacterium-mediated floral-dip transformation with the aim of decreasing the amount of bioactive GA and hence reduced the plant height. As anticipated, the transgenic plant exhibited dwarf phenotype. Importantly, compared with the wild type, the transgenic plants had delayed the seed germination, increased the chlorophyll content (28.7–36.3%) and photosynthesis capacity (14.3–18.7%) in a single leaf. At the same time, the photosynthesis capacity of the whole plants was significantly enhanced (35.7–48.6%) due to the extra leaves and branches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agharkar M, Lomba P, Altpeter F, Zhang HN, Kenworthy K, Lange T (2007) Stable expression of AtGA2ox1 in a low-input turfgrass (Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality under field conditions. Plant Biotechnol J 5:791–801

    Article  CAS  PubMed  Google Scholar 

  • Ariizumi T, Steber CM (2007) Seed Germination of GA-Insensitive sleepy1 Mutants Does Not Require RGL2 Protein Disappearance in Arabidopsis. The Plant Cell 19:791–804

    Article  CAS  PubMed  Google Scholar 

  • Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254–265

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra C, Adams E, Bhattacharya A, Page AF, Anthony P, Kourmpetli ÆS, Power JB, Lowe KC, Thomas SG, Hedden P, AL PÆ, Davey MR (2008) Over-expression of a gibberellin 2-oxidase gene from Phaseolus coccineus L. enhances gibberellin inactivation and induces dwarfism in Solanum species. Plant Cell Rep 27:463–470

    Article  CAS  PubMed  Google Scholar 

  • Dunfield K, Srivastava S, Shah S, Kav NNV (2007) Constitutive expression of ABR17 cDNA enhances germination and promotes early flowering in Brassica napus. Plant Sci 173:521–532

    Article  CAS  Google Scholar 

  • Durley RC, Pharis RP (1973) Interconversion of gibberellin A4 to gibberellins Al and AM by dwarf rice, cultivar Tanginbozu. Planta 109:357–361

    Article  CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  CAS  PubMed  Google Scholar 

  • Huerta L, Forment J, Gadea J, Fagoaga C, Peña L, Pérez-amador M, García-martínez JL (2008) Gene expression analysis in Citrus reveals the role of gibberellins on photosynthesis and stress. Plant Cell Environ 31:1620–1633

    Article  CAS  PubMed  Google Scholar 

  • Harberd NP, King KE, Carol P, Cowling RJ, Peng JR, Richards DE (1998) Gibberellin: inhibitor of an inhibitor of …? BioEssays 20(12):1001–1008

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Graebe J (1985) Inhibition of gibberellin biosynthesis by paclobutrazol in cell-free homogenates of Cucurbita maxima endosperm and Malus pumila embryos. J Plant Growth Regul 4:111–122

    Article  CAS  Google Scholar 

  • Hedden P, Proebsting WM (1999) Genetic analysis of gibberellin biosynthesis. Plant Physiol 119:365–370

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Tang D, Shen Y, Qin BX, Hong LL, You AQ, Li M, Wang X, Yu HX, Gu MB, Cheng ZK (2010) Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.). J Genet Genomics 37:23–36

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-Fernández R, Matilla AJ (2010) Genes involved in ethylene and gibberellins metabolism are required for endosperm-limited germination of Sisymbrium oycinale L. seeds germination in Sisymbrium oycinale L. seeds. Planta 231:653–664

    Article  PubMed  Google Scholar 

  • Kende H, Zeevaart JAD (1997) The five “classical” plant hormones. Plant Cell 9(1):197–1210

    Google Scholar 

  • Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Prat S, Visser RGF, Bachem CWB (2007) StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J 52:362–373

    Article  CAS  PubMed  Google Scholar 

  • Koshioka M, Douglas TJ, Ernst D, Huber J, Pharis RP (1983) Metabolism of [3H]gibberellin A4 in somatic suspension cultures of anise. Phytochemistry 22:1577–1584

    Article  CAS  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger L (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Lee DJ, Zeevaart JAD (2005) Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiol 138:243–254

    Article  CAS  PubMed  Google Scholar 

  • Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JAD, Chen LJ, Yu SM (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603–2618

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lin JZ, Zhou B, Yang YZ, Mei J, Zhao XY, Guo XH, Huang XQ, Tang DY, Liu XM (2009) Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of indica rice. Plant Cell Rep 28:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays of tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nykiforuk CL, Johnson-Flanagan AM (1998) Low temperature emergence in crop plants: biochemical and molecular aspects of germination and early seedling growth. J Crop Prod 1:249–273

    Article  CAS  Google Scholar 

  • Norusis MJ (1993) Documentation SPSS for Windows. SPSS, Chicago

    Google Scholar 

  • Oikawa T, Koshioka M, Kojima K, Yoshida H, Kawata M (2004) A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Mol Biol 55:687–700

    Article  CAS  PubMed  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14(suppl):S61–S80

    CAS  PubMed  Google Scholar 

  • Rodríguez-Gacio MC, Matilla AJ (2009) Seed dormancy and ABA signalling: the breakthrough goes on. Plant Signal Behav 4:1035–1048

    Article  Google Scholar 

  • Rood S, Hedden P (1994) Convergent pathways of gibberellin Al biosynthesis in Brassica. Plant Growth Regul 15:241–246

    Article  CAS  Google Scholar 

  • Rood SB, Pharis RP, Koshioka M (1983) Reversible conjugation of gibberellins in situ in maize. Plant Physiol 73:340–346

    Article  CAS  PubMed  Google Scholar 

  • Rood SB, Pearce D, Williams PH, Pharis RP (1989) A gibberellin-deficient Brassica mutant—rosette. Plant Physio 189:482–487

    Article  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JAD, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Kobayashi M, Ihoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508–1516

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  CAS  PubMed  Google Scholar 

  • Sayed OH (2003) Chlorophyll fluorescence as a tool in cereal research. Photosynthetica 41:321–330

    Article  CAS  Google Scholar 

  • Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–223

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Kamiya Y, Takahashi N, Graebe JE (1986) Metabolism of gibberellins in a cell-free system from immature seeds of Phaseolus vulgaris L. Planta 168:190–199

    CAS  Google Scholar 

  • Talon M, Zeevaart JA (1990) Gibberellins and stem growth as related to photoperiod in Silene armeria L. Plant Physiol 92:1094–1100

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96:4698–4703

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Caruso LV, Downie AB, Perry SE (2004) The embryo MADS domain protein AGAMOUS-like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism. Plant Cell 16:1206–1219

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Kamiya Y, Sun T (2001) Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant J 28:443–453

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Kamiya Y, Nambara E (2007) Regulation of ABA and GA levels during seed development and germination in Arabidopsis. Blackwell, Oxford

    Google Scholar 

  • Yamane H, Murofushi N, Osada H, Takahashi N (1977) Metabolism of gibberellins in early immature bean seeds. Phytochemistry 16:831–835

    Article  CAS  Google Scholar 

  • Yang J, Zhang J, Wang Z, Zhu Q, Wang W (2001) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 127:315–323

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart JA, Gage DA, Talon M (1993) Gibberellin A1 is required for stem elongation in spinach. Proc Natl Acad Sci USA 90:7401–7405

    Article  CAS  PubMed  Google Scholar 

  • Zhao XY, Yu XH, Foo E, Symons GM, Lopez J, Bendehakkalu KT, Xiang J, Weller JL, Liu XM, Reid JB, Lin CT (2007) A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiol 145:106–111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National 863 Plan of China (2007AA10Z127) and the National Natural Science Foundation of China (30800080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanming Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, B., Peng, D., Lin, J. et al. Heterologous Expression of a Gibberellin 2-Oxidase Gene from Arabidopsis thaliana Enhanced the Photosynthesis Capacity in Brassica napus L.. J. Plant Biol. 54, 23–32 (2011). https://doi.org/10.1007/s12374-010-9139-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-010-9139-2

Keywords

Navigation