Skip to main content

Advertisement

Log in

Wild Relatives of the Wheat Grain Proteome

  • Original Research
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

We applied proteomics analysis to generate a map of the wild relatives of wheat grain proteins. These differentially expressed proteins are potentially involved in metabolism, stress responses, and other biological activities. Using two-dimensional electrophoresis, we detected 119, 134, and 193 reproducible spots on gels loaded with protein samples extracted from the A, B, and D genomes, respectively, of the mature grain. In all, 89, 53, and 54 distinct proteins, respectively, were found among these genomes through MALDI-TOF mass spectrometry. Of these, 26% (n = 52) proteins were considered distinct. They included 18.89% (n = 17) in the A, 28.30% (n = 15) in the B, and 37.04% (n = 20) in the D genome, all functioning in disease and defense roles. For example, the ABA-inducible protein PHVA1 can be induced by drought, cold, heat, and salinity, while the basic endochitinase confers protection against chitin-containing fungal pathogens. The diverse functional categories found here suggest different biological processes, such as disease/defense, energy metabolism, protein synthesis and storage, cellular organization, signal transduction, transcription, and the facilitation of transport. Our findings demonstrate that these functional proteins have important roles in stress tolerance and the maintenance of quality in mature grains. The interacting effects of genetics and environment on differential protein production may be partially mediated by a regulatory mechanism in those grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderberg RJ, Walker-Simmons MK (1992) Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci U S A 89:10183–10187. doi:dx.doi.org

    Article  CAS  PubMed  Google Scholar 

  • Andon NL, Hollingworth S, Koller A, Greenland AJ, Yates JR III, Haynes PA (2002) Proteomic characterization of wheat amyloplasts using identification of proteins by tandem mass spectrometry. Proteomics 2:1156–1168

    Article  CAS  PubMed  Google Scholar 

  • Appels R, Lagudah ES (1990) Manipulation of chromosomal segments from wild wheat for the improvement of bread wheat. Aust J Plant Physiol 17:253–266

    Article  Google Scholar 

  • Berry-Lowe SL, McKnight TD, Shah DM, Meagher RB (1982) The nucleotide sequence, expression, and evolution of one member of a multigene family encoding the small subunit of ribulose-1,5-bisphosphate carboxylase in soybean. J Mol Appl Genet 1:483–498

    CAS  PubMed  Google Scholar 

  • Bliffeld M, Mundy J, Potrykus I, Futterer J (1999) Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor Appl Genet 98:1079–1086

    Article  CAS  Google Scholar 

  • Bozkurt O, Hakki EE, Akkaya MS (2007) Isolation and sequence analysis of wheat NBS-LRR type disease resistance gene analogs using degenerate PCR primers. Biochem Genet 45:469–486. doi:dx.doi.org

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brett D, Pospisil H, Valcárcel J, Reich J, Bork P (2002) Alternative splicing and genome complexity. Nat Genet 30:29–30

    Article  CAS  PubMed  Google Scholar 

  • Crouch JH, Payne TS, Dreisigacker S, Wu H, Braun HJ (2009) Improved discovery and utilization of new traits for breeding. In: Dixon J, Braun H-J, Kosina P, Crouch J (eds) Wheat facts and futures 2009. CIMMYT, Mexico, pp 42–51

    Google Scholar 

  • Damerval C, de Vienne D, Zivy M, Thiellement H (1986) The technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7:52–54

    Article  CAS  Google Scholar 

  • Day L, Bhandari DG, Greenwell P, Leonard SA, Schofield JD (2006) Characterization of wheat puroindoline proteins. FEBS J 273:5358–5373. doi:dx.doi.org

    Article  CAS  PubMed  Google Scholar 

  • Donnelly BE, Madden RD, Ayoubi P, Porter DR, Dillwith JW (2005) The wheat (Triticum aestivum L.) leaf proteome. Proteomics 5:1624–1633

    Article  CAS  PubMed  Google Scholar 

  • Dupont FM (2008) Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics. BMC Plant Biol. doi:10.1186/1471-2229-8-39

    PubMed  Google Scholar 

  • Farooq S, Shah TM, Asghar M (1996) Interspecific hybridization for wheat improvement-VIII. Production and cytogenetic analysis of F1 hybrids of wheat with Aegilops ovata. Cer Res Commun 24:60–67

    Google Scholar 

  • Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884

    Article  CAS  PubMed  Google Scholar 

  • Huxley A (1992) The new RHS dictionary of gardening. MacMillan, New York. ISBN 0-333-47494-5

    Google Scholar 

  • Iacobazzi V, Palmieri F (1995) Nucleotide sequence of a cDNA encoding the ADP/ATP carrier from wheat (Triticum turgidum). Plant Physiol 107:1473–1473. doi:dx.doi.org

    Article  CAS  PubMed  Google Scholar 

  • Islam N, Tsujimoto H, Hirano H (2003a) Wheat proteomics: relationship between fine chromosome deletion and protein expression. Proteomics 3:307–316

    Article  CAS  PubMed  Google Scholar 

  • Islam N, Tsujimoto H, Hirano H (2003b) Proteome analysis of diploid, tetraploid and hexaploid wheat: towards understanding genome interaction in protein expression. Proteomics 3:549–557

    Article  CAS  PubMed  Google Scholar 

  • Jensen ON (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8:33–41

    Article  PubMed  Google Scholar 

  • Kamal AHM, Kim KH, Shin DH, Seo HS, Shin KH, Park CS, Heo HY, Woo SH (2009a) Proteomics profile of pre-harvest sprouting wheat by using MALDI-TOF mass spectrometry. Plant Omics J 2:110–119

    CAS  Google Scholar 

  • Kamal AHM, Kim KH, Shin KH, Seo HS, Tsujimoto H, Heo HY, Choi JS, Park CS, Woo SH (2009b) Diversity of novel glutenin subunits in bread wheat (Triticum aestivum L.). J Plant Biol 52:533–542

    Article  CAS  Google Scholar 

  • Kamal AHM, Park CS, Heo HY, Chung KY, Cho YG, Kim HS, Song BH, Lee CW, Woo SH (2009c) Proteomics approach on puroindoline gene of pre-harvest sprouting wheat. Kor J Breed Sci 41:205–212

    Google Scholar 

  • Kerim T, Imin N, Weinman JJ, Rolfe BG (2003) Proteome analysis of male gametophyte development in rice anthers. Proteomics 3:738–751

    Article  CAS  PubMed  Google Scholar 

  • Kocsis MG, Ranocha P, Gage DA, Simon ES, Rhodes D, Peel GJ, Mellema S, Saito K, Awazuhara M, Li C, Meeley RB, Tarczynski MC, Wagner C, Hanson AD (2003) Insertional inactivation of the methionine s-methyltransferase gene eliminates the s-methylmethionine cycle and increases the methylation ratio. Plant Physiol 131:1808–1815. doi:dx.doi.org

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Qiu J, Singh RP, Keller B (2004) Identification and genetic characterization of an Aegilops tauschii ortholog of the wheat leaf rust disease resistance gene Lr1. Theor Appl Genet 109:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Majoul T, Bancel E, Triboi E, Hamida J, Branlard G (2003) Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from total endosperm. Proteomics 3:175–183

    Article  CAS  PubMed  Google Scholar 

  • Navari-Izzo F, Cestone B, Cavallini A, Natali L, Giordani T, Quartacci MF (2006) Copper excess triggers phospholipase D activity in wheat roots. Phytochemistry 67:1232–1242. doi:dx.doi.org

    Article  CAS  PubMed  Google Scholar 

  • Noir S, Bräutigam A, Colby T, Schmidt J, Panstruga R (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Biophys Res Commun 337:1257–1266

    Article  CAS  PubMed  Google Scholar 

  • Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobor T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tsunewaki K (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Plant Mol Biol Report 18:243–253

    Article  CAS  Google Scholar 

  • Sofalian O, Valizadeh M (2009) Investigation of seed storage proteins in some wild wheat progenitors using SDS-PAGE and acid-PAGE. Not Bot Hort Agrobot Cluj-Napoca 37:179–182

    CAS  Google Scholar 

  • USDA (2010) USDA agricultural projections to 2019. Office of the Chief Economist, World Agricultural Outlook Board, US, Department of Agriculture, prepared by the Interagency Agricultural Projections Committee, Long-term Projections Report OCE-2010-1, 100 pp.

  • van Wijk KJ (2001) Challenges and prospects of plant proteomics. Plant Physiol 126:501–508

    Article  PubMed  Google Scholar 

  • Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ et al (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302:842–846. doi:dx.doi.org

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Hsam SLK, Yu J, Jiang Y, Zeller FJ (2003) Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide gel (A-PAGE) and capillary electrophoresis. Euphytica 130:377–385

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the BioGreen 21 Program (20070301034043), Rural Development Administration, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Hee Woo.

Additional information

Ki-Hyun Kim and Abu Hena Mostafa Kamal contributed equally to this work

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Differential patterns of protein expression among A, B, and D genomes revealed by gels from SDS-PAGE analysis. (PPTX 2387 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KH., Kamal, A.H.M., Shin, KH. et al. Wild Relatives of the Wheat Grain Proteome. J. Plant Biol. 53, 344–357 (2010). https://doi.org/10.1007/s12374-010-9122-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-010-9122-y

Keywords

Navigation