Skip to main content

Advertisement

Log in

Isolation and sequence analysis of wheat NBS-LRR type disease resistance gene analogs using degenerate PCR primers

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Isolation of disease resistance gene analogs (RGAs) using the conserved motifs of the resistance genes has attracted considerable attention since it was first reported more than a decade ago. In this study, RGAs are isolated using homology-based PCR to target the nucleotide binding site (NBS) conserved regions from hexaploid wheat varieties and a few accessions of wild types. Based on sequence similarity analysis, 83 of the sequenced clones were clustered as groups. Of these RGAs, 40 were in the NBS-LLR class, containing kinase-1a (GGVGKTT or GGVGKTA), kinase-2 (KRFLIVLDDXW), kinase-3a (GSXIVVITTR or GCXVLATTR), and the GLPL motif of the NBS-spanning region. Among these, 15 contained possible intron regions, similar to Avena sativa O2 NBS-LLR type disease resistance gene (AF078874), and one to Rpm1 of rice and Yr10 and Lr10 of wheat. To our knowledge, this is the first observation of an intronic site within the P-loop domain of wheat RGAs. We detected an unspecified motif (VMVCVS) between the kinase-1a and kinase-2 domains within our clones. Additionally, one of the clones showed replacement with the kinase-3a motif with an undefined sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ (1994) Rps2 of Arabidopsis thaliana—a leucine-rich repeat class of plant-disease resistance genes. Science 265:1856–1860

    Article  PubMed  CAS  Google Scholar 

  • Cai DG, Kleine M, Kifle S, Harloff HJ, Sandal NN, Marcker KA, Kleinlankhorst RM, Salentijn EMJ, Lange W, Stiekema WJ, Wyss U, Grundler FMW, Jung C (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834

    Article  PubMed  CAS  Google Scholar 

  • Collins N, Park R, Spielmeyer W, Ellis J, Pryor AJ (2001) Resistance gene analogs in barley and their relationship to rust resistance genes. Genome 44:375–381

    Article  PubMed  CAS  Google Scholar 

  • Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor A (1998) The isolation and mapping of disease resistance gene analogs in maize. MPMI 11:968–978

    PubMed  CAS  Google Scholar 

  • Damania AB, Pecetti L, Jana S (1990) Evaluation for useful genetic traits in primitive and wild wheats. In: Srivastava JP, Damania AB (eds) Wheat genetic resources: meeting diverse needs. John Wiley & Sons, pp 57–64

  • Deng Z, Huang S, Ling P, Chen C, Yu C, Weber CA, Moore GA, Gmitter FG (2000) Cloning and characterization of NBS-LRR class resistance-gene candidate sequences in citrus. Theor Appl Genet 101:814–822

    Article  CAS  Google Scholar 

  • Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461–481

    Article  PubMed  CAS  Google Scholar 

  • Dilbirligi M, Gill KS (2003) Identification and analysis of expressed resistance gene sequences in wheat. Plant Mol Biol 53:771–787

    Article  PubMed  CAS  Google Scholar 

  • Dograr N, Akin-Yalin S, Akkaya MS (2000) Discriminating durum wheat cultivars using highly polymorphic simple sequence repeat DNA markers. Plant Breed 119:360–363

    Article  CAS  Google Scholar 

  • Dyck PL (1994) The transfer of leaf rust resistance from Triticum turgidum ssp.dicoccoides to hexaploid wheat. Can J Plant Sci 74:671–673

    Google Scholar 

  • Dyck PL, Bartos P (1994) Attempted transfer of leaf rust resistance from Triticum monococcum and durum wheat to hexaploid wheat. Can J Plant Sci 74:733–736

    Google Scholar 

  • Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278–284

    Article  PubMed  CAS  Google Scholar 

  • Gerechter-Amitai ZK, Wahl I, Vardi A, Zohary D (1971) Transfer of stem rust seedling resistance from wild diploid einkorn to tetraploid durum wheat by means of a triploid hybrid bridge. Euphytica 20:281–285

    Article  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal-X. TIBS 23:403–405

    PubMed  CAS  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985–987

    Article  PubMed  CAS  Google Scholar 

  • Jones DA, Thomas CM, Hammondkosack KE, Balintkurti PJ, Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    Article  PubMed  CAS  Google Scholar 

  • Krugman T, Levy O, Snape JW, Rubin B, Korol A, Nevo E (1997) Comparative RFLP mapping of the chlorotoluron resistance gene (Su1) in cultivated wheat (Triticum aestivum) and wild wheat (Triticum dicoccoides). Theor Appl Genet 94:46–51

    Article  CAS  Google Scholar 

  • Lagudah ES, Moullet O, Appels R (1997) Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome 40:659–665

    PubMed  CAS  Google Scholar 

  • Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG (1995) The L6 gene for flax rust resistance is related to the arabidopsis bacterial resistance gene Rps2 and the tobacco viral resistance gene N. Plant Cell 7:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    Article  PubMed  CAS  Google Scholar 

  • Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA 95:370–375

    Article  PubMed  CAS  Google Scholar 

  • Mago R, Nair S, Mohan M (1999) Resistance gene analogues from rice: cloning, sequencing and mapping. Theor Appl Genet 99:50–57

    Article  CAS  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu TY, Earle ED, Tanksley SD (1993) Map-based cloning of a protein-kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  PubMed  CAS  Google Scholar 

  • Mindrinos M, Katagiri F, Yu GL, Ausubel FM (1994) The A. thaliana disease resistance gene Rps2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78:1089–1099

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Liu YS, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000a) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and arabidopsis. Genetics 155:309–322

    PubMed  CAS  Google Scholar 

  • Pan Q, Wendel J, Fluhr R (2000b) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 20:203–213

    Google Scholar 

  • Peng JH, Fahima T, Roder MS, Li YC, Dahan A, Grama A, Ronin YI, Korol AB, Nevo E (1999) Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98:862–872

    Article  CAS  Google Scholar 

  • Ramalingam J, Cruz CMV, Kukreja K, Chiitoor JM, Wu JL, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach LE, Leung H (2003) Candidate defence genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant Microbe Int 16:14–24

    Article  CAS  Google Scholar 

  • Seah S, Sivasithamparam K, Karakousis A, Lagudah ES (1998) Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet 97:937–945

    Article  CAS  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zha WZ, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, Robertson M, Collins N, Leister D, Schulze-Lefert P, Seah S, Moullet O, Lagudah ES (1998) A superfamily of disease resistance gene analogs is located on all homoeologous chromosome groups of wheat (Triticum aestivum). Genetics 155:361–367

    Google Scholar 

  • Sun GL, Fahima T, Korol AB, Turpeinen T, Grama A, Ronin YI, Nevo E (1997) Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 95:622–628

    Article  CAS  Google Scholar 

  • Whitham S, Dineshkumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic-virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  PubMed  CAS  Google Scholar 

  • Yan GP, Chen XM, Line RF, Wellings CR (2003) Resistance gene-analog polymorphism markers co-segregating with the Y R 5 gene for resistance to wheat stripe rust. Theor Appl Genet 106:636–643

    PubMed  CAS  Google Scholar 

  • Young ND (2000) The genetic architecture of resistance. Curr Opin Plant Biol 3:285–290

    Article  PubMed  CAS  Google Scholar 

  • Yu YG, Buss GR, Saghai-Maroof MA (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA 93:11751–11756

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101:1093–1099

    Article  CAS  Google Scholar 

  • Zhang Y, Dorey S, Swiderski M, Jones JDG (2004) Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J 40:213–224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. S. E. Clark for making the DNA sequencing facilities available to EEH, Dr. R. Singh for the seeds of ‘Pastor’ and ‘Avocet,’ and Dr. A. Yildirim for ‘Chinese spring.’ We also thank to AARI, Menemen, Izmir, for the wild wheat varieties. Support from the METU research funds, YUUP (DPT-2004K120750), TUBITAK (NATO-A2 travel and TBAG-2316 research grants), and IAEA-CRP grant are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Akkaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozkurt, O., Hakki, E.E. & Akkaya, M.S. Isolation and sequence analysis of wheat NBS-LRR type disease resistance gene analogs using degenerate PCR primers. Biochem Genet 45, 469–486 (2007). https://doi.org/10.1007/s10528-007-9089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-007-9089-7

Keywords

Navigation