Carney DR, Cuddy AJC, Yap AJ (2010) Power posing: brief nonverbal displays affect neuroendocrine levels and risk tolerance. Psychol Sci 21:1363–1368. https://doi.org/10.1177/0956797610383437
Article
Google Scholar
Cuddy AJC (2015) Presence: bringing your boldest self to your biggest challenges. Little Brown and Company, Boston
Google Scholar
Cuddy AJC, Schultz SJ, Fosse NE (2018) P-curving a more comprehensive body of research on postural feedback reveals clear evidential value for power-posing effects: reply to simmons and simonsohn. Psychol Sci 29:656–666. https://doi.org/10.1177/0956797617746749
Article
Google Scholar
Cesario J, Johnson DJ (2017) Power poseur: bodily expansiveness does not matter in dyadic interactions. Soc Psychol Pers Sci 9:781–789. https://doi.org/10.1177/1948550617725153
Article
Google Scholar
Ranehill E, Dreber A, Johannesson M, Leiberg S, Sul S, Weber RA (2015) Assessing the robustness of power posing: no effect on hormones and risk tolerance in a large sample of men and women. Psychol Sci 26:653–656. https://doi.org/10.1177/0956797614553946
Article
Google Scholar
Simmons JP, Simonsohn U (2017) Power posing: P-curving the evidence. Psychol Sci 28:687–693. https://doi.org/10.1177/0956797616658563
Article
Google Scholar
Allen J, Gervais SJ, Smith JL (2013) Sit big to eat big: the interaction of body posture and body concern on restrained eating. Psychol Women Quart 37:325–336. https://doi.org/10.1177/036168431347647
Article
Google Scholar
Elkjær E, Mikkelsen MB, Michalak J, Mennin DS, O’Toole MS (2020) Expansive and contractive postures and movement: a systematic review and meta-analysis of the effect of motor displays on affective and behavioral responses. Perspect Psychol Sci. https://doi.org/10.1177/1745691620919358
Article
Google Scholar
Gronau QF, van Erp S, Heck DW, Cesario J, Jonas KJ, Wagenmakers EJ (2017) A Bayesian model-averaged meta-analysis of the power pose effect with informed and default priors: the case of felt power. Compreh Results Soc Psychol 2:123–138. https://doi.org/10.1080/23743603.2017.1326760
Article
Google Scholar
Hall JA, Horgan TG, Murphy NA (2019) Nonverbal communication. Annu Rev Psychol 70:271–294. https://doi.org/10.1146/annurev-psych-010418-103145
Article
Google Scholar
Burgoon JK, Birk T, Pfau M (1990) Nonverbal behaviors, persuasion, and credibility. Hum Commun Res 17:140–169. https://doi.org/10.1111/j.1468-2958.1990.tb00229.x
Article
Google Scholar
Cashdan E (1998) Smiles, speech, and body posture: how women and men display sociometric status and power. J Nonverbal Behav 22:209–228. https://doi.org/10.1023/A:1022967721884
Article
Google Scholar
Newman R, Furnham A, Weis L, Gee M, Cardos R, Lay A, McClelland A (2016) Non-verbal presence: How changing your behaviour can increase your ratings for persuasion, leadership and confidence. Psychology 7:488–499. https://doi.org/10.4236/psych.2016.74050
Article
Google Scholar
Bonaccio S, O’Reilly J, O’Sullivan SL, Chiocchio F (2016) Nonverbal behavior and communication in the workplace. J Manag 42:1044–1074. https://doi.org/10.1177/0149206315621146
Article
Google Scholar
Vacharkulksemsuk T, Reit E, Khambatta P, Eastwick PW, Finkel EJ, Carney DR (2016) Dominant, open nonverbal displays are attractive at zero-acquaintance. Proc Natl Acad Sci USA 113:4009–4014. https://doi.org/10.1073/pnas.1508932113
Article
Google Scholar
Spezio ML, Loesch L, Gosselin F, Mattes K, Alvarez RM (2012) Thin-slice decisions do not need faces to be predictive of election outcomes. Polit Psychol 33:331–341. https://doi.org/10.1111/j.1467-9221.2012.00897.x
Article
Google Scholar
Nass C, Moon Y (2005) Machines and mindlessness: Social responses to computers. J Soc Issues 56:81–103. https://doi.org/10.1111/0022-4537.00153
Article
Google Scholar
Lee KM, Peng W, Jin S-A, Yan C (2006) Can robots manifest personality? An empirical test of personality recognition, social responses, and social presence in human–robot interaction. J Commun 56:754–772. https://doi.org/10.1111/j.1460-2466.2006.00318.x
Article
Google Scholar
Wang W (2017) Smartphones as Social Actors? Social dispositional factors in assessing anthropomorphism. Comput Hum Behav 68:334–344. https://doi.org/10.1016/j.chb.2016.11.022
Article
Google Scholar
Wan EW, Chen RP (2021) Anthropomorphism and object attachment. Curr Opin Psychol 39:88–93. https://doi.org/10.1016/j.copsyc.2020.08.009
Article
Google Scholar
de Graaf MMA (2016) An ethical evaluation of human–robot relationships. Int J Soc Robot 8:589–598. https://doi.org/10.1007/s12369-016-0368-5
Article
Google Scholar
Fox J, Gambino A (2021) Relationship development with humanoid social robots: Applying interpersonal theories to human/robot interaction. Cyberpsychol Behav Soc Netw 24:294–299. https://doi.org/10.1089/cyber.2020.0181
Article
Google Scholar
Wullenkord R, Eyssel F (2020) Societal and ethical issues in HRI. Curr Robot Rep 1:85–96. https://doi.org/10.1007/s43154-020-00010-9
Article
Google Scholar
Seibt J, Vestergaard C, Damholdt MF (2020). Sociomorphing, not anthropomorphizing: towards a typology of experienced sociality. In: Nørskov M, Seibt J, Quick OS (eds) Culturally sustainable social robotics: proceedings of robophilosophy 2020. IOS Press, Amsterdam, pp 51–67. doi:https://doi.org/10.3233/FAIA200900
Edwards C, Edwards A, Stoll B, Lin X, Massey N (2019) Evaluations of an artificial intelligence instructor’s voice: social identity theory in human–robot interactions. Comput Human Behav 90:357–362. https://doi.org/10.1016/j.chb.2018.08.027
Article
Google Scholar
Hong JW (2020) Why is artificial intelligence blamed more? Analysis of faulting artificial intelligence for self-driving car accidents in experimental settings. Int J Hum-Comput Int 36:1768–1774. https://doi.org/10.1080/10447318.2020.1785693
Article
Google Scholar
Lee-Won RJ, Joo YK, Park SG (2020) Media equation. Int Encycl Media Psychol. https://doi.org/10.1002/9781119011071.iemp0158
Article
Google Scholar
Nielsen YA, Pfattheicher S, Keijsers M (2022) Prosocial behavior towards machines. Curr Opin Psychol 43:260–265. https://doi.org/10.1016/j.copsyc.2021.08.004
Article
Google Scholar
Liu B, Sundar SS (2018) Should machines express sympathy and empathy? Experiments with a health advice chatbot. Cyberpsychol Behav Soc Netw 21:625–636. https://doi.org/10.1089/cyber.2018.0110
Article
Google Scholar
Broadbent E, Kumar V, Li X, Sollers J, Stafford RQ, MacDonald BA, Wegner DM (2013) Robots with display screens: A robot with a more humanlike face display is perceived to have more mind and a better personality. PLoS ONE 8:e72589. https://doi.org/10.1371/journal.pone.0072589
Article
Google Scholar
Krach S, Hegel F, Wrede B, Sagerer G, Binkofski F, Kircher T (2008) Can machines think? Interaction and perspective taking with robots investigated via fMRI. PLoS ONE 3:e2597. https://doi.org/10.1371/journal.pone.0002597
Article
Google Scholar
Mori M (1970) The uncanny valley. Energy 7:33–35
Google Scholar
Kätsyri J, Förger K, Mäkäräinen M, Takala T (2015) A review of empirical evidence on different uncanny valley hypotheses: support for perceptual mismatch as one road to the valley of eeriness. Front Psychol 6:390. https://doi.org/10.3389/fpsyg.2015.00390
Article
Google Scholar
Perez JA, Garcia Goo H, Sánchez Ramos A, Contreras V, Strait MK (2020) The uncanny valley manifests even with exposure to robots. In: Proceedings of the 2020 ACM/IEEE International Conference on Human–Robot Interaction. IEEE Press, New York, pp 101–103. doi:https://doi.org/10.1145/3371382.3378312
Seyama J, Nagayama RS (2007) The uncanny valley: Effect of realism on the impression of artificial human faces. Presen Teleop Virt 16:337–351. https://doi.org/10.1162/pres.16.4.337
Article
Google Scholar
Strait MK, Floerke VA, Ju W, Maddox K, Remedios JD, Jung MF, Urry HL (2017) Understanding the uncanny: both atypical features and category ambiguity provoke aversion against humanlike robots. Front Psychol 8:1366. https://doi.org/10.3389/fpsyg.2017.01366
Article
Google Scholar
Ferrari F, Paladino MP, Jetten J (2016) Blurring human-machine distinctions: Anthropomorphic appearance in social robots as a threat to human distinctiveness. Int J Soc Robot 8:287–302. https://doi.org/10.1007/s12369-016-0338-y
Article
Google Scholar
Stein J-P, Liebold B, Ohler P (2019) Stay back, clever thing! Linking situational control and human uniqueness concerns to the aversion against autonomous technology. Comput Hum Behav 95:73–82. https://doi.org/10.1016/j.chb.2019.01.021
Article
Google Scholar
Diel A, MacDorman KF (2021) Creepy cats and strange high houses: Support for configural processing in testing predictions of nine uncanny valley theories. J Vis 21:1–20. https://doi.org/10.1167/jov.21.4.1
Article
Google Scholar
Moore RK (2012) A Bayesian explanation of the ‘Uncanny Valley’ effect and related psychological phenomena. Sci Rep 2:864. https://doi.org/10.1038/srep00864
Article
Google Scholar
MacDorman KF (2005) Mortality salience and the uncanny valley. In: Proceedings of the 5th IEEE-RAS International Conference on Humanoid Robots. IEEE Press, New York, pp 399–405. doi:https://doi.org/10.1109/ICHR.2005.1573600
Stein JP, Ohler P (2017) Venturing into the uncanny valley of mind—The influence of mind attribution on the acceptance of human-like characters in a virtual reality setting. Cognition 160:43–50. https://doi.org/10.1016/j.cognition.2016.12.010
Article
Google Scholar
Złotowski J, Yogeeswaran K, Bartneck C (2017) Can we control it? Autonomous robots threaten human identity, uniqueness, safety, and resources. Int J Hum Comput St 100:48–54. https://doi.org/10.1016/j.ijhcs.2016.12.008
Article
Google Scholar
Appel M, Izydorczyk D, Weber S, Mara M, Lischetzke T (2020) The uncanny of mind in a machine: Humanoid robots as tools, agents, and experiencers. Comput Hum Behav 102:274–286. https://doi.org/10.1016/j.chb.2019.07.031
Article
Google Scholar
Gray K, Wegner D (2012) Feeling robots and human zombies: Mind perception and the uncanny valley. Cognition 125:125–130. https://doi.org/10.1016/j.cognition.2012.06.007
Article
Google Scholar
Beck A, Cañamero L, Hiolle A, Damiano L, Cosi P, Tesser F, Sommavilla G (2013) Interpretation of emotional body language displayed by a humanoid robot: a case study with children. Int J Soc Robot 5:325–334. https://doi.org/10.1007/s12369-013-0193-z
Article
Google Scholar
Breazeal C (2002) Emotion and sociable humanoid robots. Int J Hum Comput St 59:119–155. https://doi.org/10.1016/S1071-5819(03)00018-1
Article
Google Scholar
Destephe M, Henning A, Zecca M, Hashimoto K, Takanishi A (2013) Perception of emotion and emotional intensity in humanoid robots’ gait. In: Proceedings of the 2013 IEEE international conference on robotics and biomimetics. IEEE Press, New York, pp 1276–1281. doi:https://doi.org/10.1109/robio.2013.6739640
Bergmann K, Eyssel F, Kopp S (2012) A second chance to make a first impression? How appearance and nonverbal behavior affect perceived warmth and competence of virtual agents over time. In: Nakano Y, Neff M, Paiva A, Walker M (eds) Proceedings of the 2012 international conference on intelligent virtual agents. Springer, Berlin, pp 126–138. doi:https://doi.org/10.1007/978-3-642-33197-8_13
Chidambaram V, Chiang Y-H, Mutlu B (2012) Designing persuasive robots: How robots might persuade people using vocal and nonverbal cues. In: Proceedings of the 7th annual ACM/IEEE international conference on human-robot interaction. ACM Press, New York, pp 293–300. doi:https://doi.org/10.1145/2157689.2157798
Straßmann C, Rosenthal-von der Pütten A, Yaghoubzadeh R, Kaminski R, Krämer N (2016) The effect of an intelligent virtual agent’s nonverbal behavior with regard to dominance and cooperativity. In: Proceedings of the 2016 international conference on intelligent virtual agents. Springer, Berlin, pp 15–28. doi:https://doi.org/10.1007/978-3-319-47665-0_2
Johal W, Pesty S, Calvary G (2014) Towards companion robots behaving with style. In: Proceedings of the 23rd IEEE international symposium on robot and human interactive communication. IEEE Press, New York, pp 1063–1068. doi:https://doi.org/10.1109/ROMAN.2014.6926393
Peters R, Broekens J, Li K, Neerincx MA (2019) Robots expressing dominance: Effects of behaviours and modulation. In: Proceedings of the 8th international conference on affective computing and intelligent interaction (ACII). IEEE Press, New York, pp 1–7. doi:https://doi.org/10.1109/ACII.2019.8925500
Heckhausen J (2007) Competence and motivation in adulthood and old age. In: Elliot AJ, Dweck CS (eds) Handbook of competence and motivation. The Guilford Press, New York, pp 240–258
Google Scholar
Jones C, Peskin H, Wandeler C (2017) Femininity and dominance across the lifespan: Longitudinal findings from two cohorts of women. J Adult Dev 24:22–30. https://doi.org/10.1007/s10804-016-9243-8
Article
Google Scholar
Müller BCN, Gao X, Nijssen SRR, Damen TGE (2020) I, robot: how human appearance and mind attribution relate to the perceived danger of robots. Int J Soc Robot. https://doi.org/10.1007/s12369-020-00663-8
Article
Google Scholar
Gnambs T, Appel M (2019) Are robots becoming unpopular? Changes in attitudes towards autonomous robotic systems in Europe. Comput Hum Behav 93:53–61. https://doi.org/10.1016/j.chb.2018.11.045
Article
Google Scholar
Wang S, Rochat P (2017) Human perception of animacy in light of the uncanny valley phenomenon. Perception 46:1386–1411. https://doi.org/10.1177/0301006617722742
Article
Google Scholar
Givens DB (2005) The nonverbal dictionary of gestures, signs and body language cues. Center for Nonverbal Studies Press, Spokane
Google Scholar
Reeves B, Yeykelis L, Cummings JJ (2016) The use of media in media psychology. Media Psych 19:49–71. https://doi.org/10.1080/15213269.2015.1030083
Article
Google Scholar
Furley P, Dicks M, Memmert D (2012) Nonverbal behavior in soccer: the influence of dominant and submissive body language on the impression formation and expectancy of success of soccer players. J Sport Exerc Psy 34:61–82. https://doi.org/10.1123/jsep.34.1.61
Article
Google Scholar
Ho C-C, MacDorman KF (2010) Revisiting the uncanny valley theory: developing and validating an alternative to the Godspeed indices. Comput Hum Behav 26:1508–1518. https://doi.org/10.1016/j.chb.2010.05.015
Article
Google Scholar
MacDorman KF, Entezari S (2015) Individual differences predict sensitivity to the uncanny valley. Interact Stud 16:141–172. https://doi.org/10.1075/is.16.2.01mac
Article
Google Scholar
Stafford RQ, MacDonald BA, Jayawardena C, Wegner DM, Broadbent E (2014) Does the robot have a mind? Mind perception and attitudes towards robots predict use of an eldercare robot. Int J Soc Robot 6:17–32. https://doi.org/10.1007/s12369-013-0186-y
Article
Google Scholar
Field A (2013) Discovering statistics using IBM SPSS statistics. SAGE Publications, Thousand Oaks
Google Scholar
Mara M, Stein JP, Latoschik ME, Lugrin B, Schreiner C, Hostettler R, Appel M (2021) User responses to a humanoid robot observed in real life, virtual reality, 3D and 2D. Front Psychol 12:1152. https://doi.org/10.3389/fpsyg.2021.633178
Article
Google Scholar
Rosenthal-von der Pütten AM, Krämer N (2014) How design characteristics of robots determine evaluation and uncanny valley related responses. Comput Hum Behav 36:422–439. https://doi.org/10.1016/j.chb.2014.03.066
Article
Google Scholar
Thunberg S, Thellman S, Ziemke T (2017) Don’t judge a book by its cover: a study of the social acceptance of NAO vs. Pepper. In: Proceedings of the 5th international conference on human agent interaction. ACM Press, New York, pp 443–446. doi:https://doi.org/10.1145/3125739.3132583
de Graaf MMA, ben Allouch S, van Dijk JAGM, (2019) Why would I use this in my home? A model of domestic social robot acceptance. Hum Comput Int 34:115–173. https://doi.org/10.1080/07370024.2017.1312406
Article
Google Scholar
Kaplan F (2004) Who is afraid of the humanoid? Investigating cultural differences in the acceptance of robots. Int J Humanoid Robot 1:1–16. https://doi.org/10.1142/S0219843604000289
MathSciNet
Article
Google Scholar
Liang Y, Lee SA (2017) Fear of autonomous robots and artificial intelligence: Evidence from national representative data with probability sampling. Int J Soc Robot 9:379–384. https://doi.org/10.1007/s12369-017-0401-3
Article
Google Scholar
Hancock PA, Billings DR, Schaefer KE, Chen JYC, de Visser E, Parasuraman R (2011) A meta-analysis of factors affecting trust in human–robot interaction. Hum Fact 53:517–527. https://doi.org/10.1177/0018720811417254
Article
Google Scholar
Wiese E, Metta G, Wykowska A (2017) Robots as intentional agents: Using neuroscientific methods to make robots appear more social. Front Psychol 8:1663. https://doi.org/10.3389/fpsyg.2017.01663
Article
Google Scholar
Złotowski J, Sumioka H, Nishio S, Glas DF, Bartneck C, Ishiguro H (2016) Appearance of a robot affects the impact of its behaviour on perceived trustworthiness and empathy. Paladyn J Behav Robot 7:55–66. https://doi.org/10.1515/pjbr-2016-000
Article
Google Scholar