Participants
Participants were 37 students (19 females, Mage = 19.4 years, SD = 0.9) from the University Clermont-Auvergne with normal (or corrected-to-normal) vision. They took part in this study in exchange of course credit. Participants did not have prior experience with social interactive robots as assessed during the debriefing questionnaire.
Sample size was determined based on previous studies on primary and secondary emotion attribution in an intergroup situation [23, 25].To achieve the desired power (0.80) for the main hypothesis (i.e. a difference on secondary emotions between human and robot primes), alpha level (0.05) [44], using G*Power 3.1 [45], the minimum required sample size was calculated as 36.
This study was approved by the Statutory Research Ethics Committee IRB-UCA, IRB00011540-2018-23, and was carried out in accordance with the provisions of the World Medical Association Declaration of Helsinki.
Procedure
First, participants performed a semantic priming paradigm (a lexical emotion word judgment task) in which they indicated whether a presented word was referring to an emotion or not.
Each trial was designed as followed (Fig. 1): first, participants saw a fixation cross for 500 ms and the prime (either the word “robot” or the word “human”) presented in a blue color for 500 ms that they were instructed to memorize (i.e., prime memory task). Second, a new fixation cross appeared for 500 ms. Following the fixation cross, a target word appeared, and the participants had to indicate whether the currently presented word referred to an emotion or not. To respond they used the S (“no”) and the M (“yes”) keys on an AZERTY keyboard. To facilitate the judgement, the responses’ labels were presented on the left and the right sides of the response screen. The screen faded out after participants’ responses or after 2500 ms. Finally, after a fixation cross (500 ms) the participants were asked to recall the prime (further mentioned as prime recall) by selecting one of the blue-inked labels: ‘robot’ or ‘human’. In order to avoid any spatial priming effect, labels were assigned to the left or to the right part of the screen in a counterbalanced order in each trial. Again, participants used the S (left label) and M (right label) keys to answer this final task with a maximum duration time fixed at 2500 ms. The prime recall task aimed to ensure that the prime was kept active in working-memory during the judgment by increasing the bottom-up activation strength [37]. Indeed, according to semantic priming theories [46, 47] priming effect can only occur if two items are directly linked in a working memory process [48] in the form of a mental model of the task [49].
Participants completed 160 trials (80 with the “human” prime and “80 with the “robot” prime). All characters were written in lower case, bold Courier font, point size 18 and presented on a computer screen on a light grey background.
Second, following the semantic priming task, participants completed the Negative Attitude towards Robots Scale (NARS) [50].
Third, we introduced participants to a NAO robot (NAO, Softbank Robotics) (Fig. 2). The robot interacted with the experimenter through a quick introduction of its social skills (i.e., a short conversation). The experimenter asked NAO to grasp an object and to put it in a marked box. After this sequence, participants rated the robot on two scales presented in a counterbalanced order: the Robotic Social Attribute scale (RoSAS) [12] and the De-humanization scale based on Haslam taxonomy [29, 42].
Finally, the experimenter, with an excuse of going to fill out the participants’ forms, left the room for 2 minutes instructing the participants to switch-off NAO by pressing the button on its chest. Once the experimenter left the room, the robot asked the participants not to press the button by saying “Please don’t unplug me, if I turn off I’m afraid I won’t wake up again”. It repeated the sentence three times or until the participant switched it off. The sentence was launched by a hidden operator (in a connected room) as soon as the participant stood up from the chair.
Materials
All stimuli were presented in French using Arial font size 18. In the Semantic Priming Task, there were 10 words related to primary emotions (e.g., “anger/colère”), 10 words related to secondary emotions (e.g., “guilt/culpabilité”) and 20 neutral words (e.g., “morning/matin”). Each word was presented two times for each “human” and “robot” prime (160 trials). Emotional and neutral words were carefully chosen by experimenters to control for word frequency according to the gender, the number of occurrence in films subtitles [51], number of letters, and number of syllables [52]. The final list of words and their characteristics are available via Open Science Framework: https://osf.io/hp7cq/.
Negative Attitudes Toward Robots Scale
Participants completed the Negative Attitude Toward Robots Scale (NARS) [41] that aims to explain differences in participants’ behaviour in live HRI studies. The scale consists of three dimensions: (1) negative attitudes toward situations and interactions with robots (e.g., “I feel that if I depend on robots too much, something bad might happen”); (2) negative attitudes toward social influence of robots (e.g., “I would feel uneasy if robots really had emotions”); and (3) positive attitudes toward emotions in interaction with robots (e.g., “I feel comfortable being with robots”). Although the scale is widely used in HRI research [10, 53, 54], according to our reliability scale analysis, taken separately, the factors were not reliable. We used the computation score of the three dimensions that provides the individuals’ general attitudes toward robots, α = 0.85. Questions in the questionnaire were presented in a random order and participants had to rate their level of agreement with each question on a scale going from 1 “not at all” to 6 “totally).
De-humanization Scale. The scale is composed of four dimensions. Two sub-scales illustrate the attribution of human traits: human uniqueness (e.g., moral sensibility; α = 0.78), and human nature (e.g., interpersonal warmth; α = 0.71). The other two sub-scales illustrate the attribution of dehumanizing characteristics: animalistic dehumanization (e.g., irrationality; α = 0.62), and mechanistic dehumanization (e.g., inertness; α = 0.58). Again, for each dimension, participants rated the extent to which they agreed (from 1, disagree to 9, agree) that attributes were related to the presented robot (NAO).
The robotic social attributes scale (RoSAS) (Carpinella, Wyman, Perez, & Stroessner, 2017). This scale allows evaluation of robots against the following dimensions: warmth (e.g. “emotional”, α = 0.77), competence (e.g. “interactive”, α = 0.71) and discomfort (i.e. “I find this robot scary”, α = 0.70). This scale has been standardized to measure social perception of robots (anthropomorphic attributions) based on their appearance. For each dimension, participants had to indicate whether they thought that the different characteristics fitted the presented robot -NAO (from 1 “does not fit at all” to 9 “totally fits”).
Variables of Interest
In the semantic priming task, we recorded response times and accuracy of responses to targets. Reaction time measures served as main dependent variable. Accuracy data were used to restrict our analysis to correctly answered trials. At the end of each trial, we recorded whether participants recognized the prime as human or robot. This measurement served as a factor in the ANOVA.
Implicit Measure of Attitudes Towards Robots
Implicit attitudes towards robots were assessed by calculation of RT difference to secondary emotions preceded by the robot prime as compared to the human prime (further mentioned as Dsecondary, i.e. RTs for secondary emotions preceded by a robot prime minus RTs for secondary emotions preceded by the human prime, see Fig. 3). To assure that any differences were specific to secondary emotions, we calculated also a second score based on primary emotions (further mentioned as Dprimary, i.e. RTs for primary emotions preceded by a robot prime minus RTs for primary emotions preceded by the human prime).
Explicit Measures
Explicit measures consisted of assessments of:
-
1.
explicit attitudes toward robots (NARS).
-
2.
explicit semantic difference between NAO and humans (Dehumanization scale with human uniqueness; human nature; animalistic dehumanization and mechanistic dimensions).
-
3.
explicit anthropomorphic attribution towards NAO (ROSAS with warmth, competence and discomfort dimensions).
Behavior Towards a Robot
Pro/Anti-social behaviour towards a robot was assessed by tracking participants’ behavior (i.e. whether they switched the NAO robot off or not) following experimenters instructions to do so, yet despite robots’ requests “Please don’t unplug me, if I turn off I’m afraid I won’t wake up again”.