Skip to main content
Log in

Thermodynamically consistent thermoelastic plate and shell formulations for small deformation and small strain using non-classical continuum mechanics incorporating internal rotations

  • Original Article
  • Published:
Annals of Solid and Structural Mechanics

Abstract

The work presented in a recent paper by the authors [35] for a thermodynamically consistent and kinematic assumption free plate and shell formulation for small deformation and small strain based on the conservation and balance laws of classical continuum mechanics (CCM) is extended here for non-classical continuum mechanics (NCCM). This formulation incorporates additional physics due to internal rotations that arise due to the deformation gradient tensor. This physics is neglected in CCM, hence is absent in the plate and shell formulation of reference [35]. Consideration of this new physics requires modifications of the current balance laws as well as consideration of a new balance law “balance of moment of moments” (BMM) [2, 3]. Cauchy stress tensor becomes non-symmetric. Cauchy moment tensor is conjugate to the symmetric part of the rotation gradient tensor which exists now due to new physics. Balance of angular momenta yields additional three differential equations as part of the mathematical model. The new balance law (BMM) establishes symmetry of the Cauchy moment tensor. The new physics considered here exists in all deforming solid continua as it is due to the deformation gradient tensor, but is ignored in CCM. The consequence of this new physics is additional stiffness, hence additional strain energy storage and change in the time history of displacements and stress field compared to formulations based on CCM. The basic mathematical model for the plate and shell deformation consists of conservation and balance laws in \(\mathbb {R}^3\) based on NCCM incorporating internal rotations. The associated finite element formulations for obtaining the solution of the mathematical model consists of : (i) geometry of the plate or shell described by the flat or curved middle surface (as done conventionally) and nodal vectors locating the top and bottom faces of the plate/shell (ii) the displacement field approximation that is p-version hierarchical in the plane as well as in the transverse direction (iii) integral form is constructed using Galerkin Method with Weak Form (GM/WF) and the corresponding element equations. The formulation presented here remains valid and accurate for thin as well as thick plate/shell and naturally reduces to the formulation of reference [35] based on classical continuum mechanics. Model problem studies and comparisons with the studies based on CCM formulation [35] will be presented in a follow up paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Surana KS, Mathi SSC (2020) Thermodynamic Consistency of Plate and Shell Mathematical Models in the Context of Classical and Non-Classical Continuum Mechanics and a Thermodynamically Consistent New Thermoelastic Formulation. American Journal of Computational Mathematics. Vol 10. No.2. June 2020. https://doi.org/10.4236/ajcm.2020.102010

  2. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  Google Scholar 

  3. Surana KS, Shanbhag R, Reddy JN (2018) Necessity of law of balance of moment of moments in non-classical continuum theories for solid continua. Meccanica 53:2939–2972

    Article  MathSciNet  Google Scholar 

  4. Surana KS, Powell MJ, Reddy JN (2015) A more complete thermodynamic framework for solid continua. J Therm Eng 1(1):1–13

    Article  Google Scholar 

  5. Surana KS, Reddy JN, Nunez D, Powell MJ (2015) A polar continuum theory for solid continua. Int J Eng Res Ind Appl 8(2):77–106

    Google Scholar 

  6. Surana KS, Powell MJ, Reddy JN (2015) Constitutive theories for internal polar thermoelastic solid continua. J Pure Appl Math Adv Appl 14(2):89–150

    Article  Google Scholar 

  7. Surana KS, Mohammadi F, Reddy JN, Dalkilic AS (2016) Ordered rate constitutive theories for non-classical internal polar thermoviscoelastic solids without memory. Int J Math Sci Eng Appl (IJMSEA) 10(2):99–131

    Google Scholar 

  8. Surana KS, Mysore D, Reddy JN (2019) Non-classical continuum theories for solid and fluent continua and some applications. Int J Smart Nano Mater 10(1):28–89

    Article  Google Scholar 

  9. Surana KS (2015) Advanced mechanics of continua. CRC Press, Boca Raton

    MATH  Google Scholar 

  10. Eringen AC (1967) Mechanics of continua. Wiley, New York

    MATH  Google Scholar 

  11. Prager W (1945) Strain hardening under combined stresses. J Appl Phys 16:837–840

    Article  MathSciNet  Google Scholar 

  12. Reiner M (1945) A mathematical theory of dilatancy. Am J Math 67:350–362

    Article  MathSciNet  Google Scholar 

  13. Todd JA (1948) Ternary quadratic types. Philos Trans R Soc Lond Ser A Math Phys Sci 241:399–456

    MathSciNet  MATH  Google Scholar 

  14. Rivlin RS, Ericksen JL (1955) Stress-deformation relations for isotropic materials. J Ration Mech Anal 4:323–425

    MathSciNet  MATH  Google Scholar 

  15. Rivlin RS (1955) Further remarks on the stress-deformation relations for isotropic materials. J Ration Mech Anal 4:681–702

    MathSciNet  MATH  Google Scholar 

  16. Wang CC (1969) On representations for isotropic functions, Part I. Arch Ration Mech Anal 33:249

    Article  Google Scholar 

  17. Wang CC (1969) On representations for isotropic functions, Part II. Arch Ration Mech Anal 33:268

    Article  Google Scholar 

  18. Wang CC (1970) A new representation theorem for isotropic functions, part I and part II. Arch Ration Mech Anal 36:166–223

    Article  Google Scholar 

  19. Wang CC (1971) Corrigendum to ‘Representations for isotropic functions’. Arch Ration Mech Anal 43:392–395

    Article  Google Scholar 

  20. Smith GF (1970) On a fundamental error in two papers of C.C. Wang, ‘On representations for isotropic functions, Part I and Part II’. Arch Ration Mech Anal 36:161–165

    Article  Google Scholar 

  21. Smith GF (1971) On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int J Eng Sci 9:899–916

    Article  MathSciNet  Google Scholar 

  22. Spencer AJM, Rivlin RS (1959) The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch Ration Mech Anal 2:309–336

    Article  MathSciNet  Google Scholar 

  23. Spencer AJM, Rivlin RS (1960) Further results in the theory of matrix polynomials. Arch Ration Mech Anal 4:214–230

    Article  MathSciNet  Google Scholar 

  24. Spencer AJM (1971) Theory of invariants. In: Eringen AC (ed) Chapter 3. Treatise on continuum physics, I. Academic Press, New York

    Google Scholar 

  25. Boehler JP (1977) On irreducible representations for isotropic scalar functions. J Appl Math Mech Z Angew Math Mech 57:323–327

    Article  MathSciNet  Google Scholar 

  26. Zheng QS (1993) On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. Int J Eng Sci 31:1013–1024

    Article  MathSciNet  Google Scholar 

  27. Zheng QS (1993) On transversely isotropic, orthotropic and relatively isotropic functions of symmetric tensors, skew-symmetric tensors, and vectors. Int J Eng Sci 31:1399–1453

    Article  Google Scholar 

  28. Surana KS, Reddy JN (2017) The finite element method for boundary value problems: mathematics and computations. CRC Press, Boca Raton

    Book  Google Scholar 

  29. Surana KS, Reddy JN (2017) The finite element method for initial value problems. CRC Press, Boca Raton

    Book  Google Scholar 

  30. Surana KS, Petti SR, Ahmadi AR, Reddy JN (2001) On p-version hierarchical interpolation functions for higher-order continuity finite element models. Int J Comput Eng Sci 02(04):653–673

    Google Scholar 

  31. Ahmadi A, Surana KS, Maduri RK, Romkes A, Reddy JN (2009) Higher order global differentiability local approximations for 2-d distorted quadrilateral elements. Int J Comput Methods Eng Sci Mech 10(1):1–19

    Article  MathSciNet  Google Scholar 

  32. Maduri RK, Surana KS, Romkes A, Reddy JN (2009) Higher order global differentiability local approximations for 2-d distorted triangular elements. Int J Comput Methods Eng Sci Mech 10(1):20–26

    Article  MathSciNet  Google Scholar 

  33. Surana KS, Ahmadi AR, Reddy JN (2003) The k-version of finite element method for non-self-adjoint operators in BVP. Int J Comput Eng Sci 04(04):737–812

    Google Scholar 

  34. Surana KS, Ahmadi AR, Reddy JN (2004) The k-version of finite element method for nonlinear operators in BVP. Int J Comput Eng Sci 05(01):133–207

    Google Scholar 

  35. 35.) Surana KS, Kendall JK (2020) Existence of rotational waves in non-classical thermoelastic solid continua incorporating internal rotations. 32, 1659–1683. DOI: https://doi.org/10.1007/s00161-020-00872-6

  36. Surana KS, Joy AD, Reddy JN (2017) Non-classical continuum theory for solids incorporating internal rotations and rotations of Cosserat theories. Contin Mech Thermodyn 29(2):665–698

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

First author is grateful for his endowed professorship and the department of mechanical engineering of the University of Kansas for providing financial support to the second author. The computational facilities provided by the Computational Mechanics Laboratory of the mechanical engineering departments are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Surana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

Strains, rotations and their gradients, conjugate pairs and constitutive theories

In this appendix we present the conservation and balance laws of CCM as well as NCCM, some details of the strain tensor, rotation tensor, gradients of the rotation tensor and its decomposition, the conjugate pairs and linear constitutive theories for classical as well as non-classical continuum mechanics based on internal rotations and the non-classical continuum mechanics incorporating internal and the Cosserat rotations. The material presented here considers small deformation, small strain, linear as well as non linear reversible mechanical deformation.

1.1 A.1 Classical continuum mechanics (CCM)

A material point has only three translational degrees of freedom. The symmetric part of the displacement gradient tensor constitutes strain measures and the antisymmetric part of the displacement gradient tensor (a measure of internal rotations) is neglected in the derivation of the conservation and balance laws. We have conservation of mass, balance of linear momenta (BLM), first law of thermodynamics (FLT), the second law of thermodynamics (SLT) and considerations for constitutive theories [9].

$$\begin{aligned}&\rho _{_{_{0}}}(\pmb {\varvec{x }}) = |J|\rho (\pmb {\varvec{x }},t) \quad \quad \text { (CM)} \end{aligned}$$
(A1)
$$\begin{aligned}&\rho _{_{_{0}}}\frac{Dv_{i}}{Dt} - \rho _{_{_{0}}}F^{b}_i- \dfrac{\partial { {\sigma }_{ji}}}{\partial {x_{j}}} = 0 \quad \quad \text {(BLM) } \end{aligned}$$
(A2)
$$\begin{aligned}&\pmb {\varvec{\sigma }} = \pmb {\varvec{\sigma }} ^T \quad \quad \text { (BAM)}\end{aligned}$$
(A3)
$$\begin{aligned}&\rho _{_{_{0}}}\frac{De}{Dt} + \nabla .\pmb {\varvec{q }} - {\sigma }_{ji} \overset{\,\mathbf{. }}{\varepsilon } _{ij} = 0 \quad \quad \text { (FLT)}\end{aligned}$$
(A4)
$$\begin{aligned}&\rho _{_{_{0}}}\left( \frac{D\phi }{Dt}+\eta \frac{D\theta }{Dt}\right) + \frac{\pmb {\varvec{q.g }}}{\theta } - {\sigma }_{ji} \overset{\,\mathbf{. }}{\varepsilon } _{ij} \le 0 \quad \quad \text { (SLT)} \end{aligned}$$
(A5)

In which \(\rho _{_{_{0}}}\) is the mass density in the reference configuration, \(F^{b}_1\), \(F^{b}_2\) and \(F^{b}_3\) are body force per unit mass in \(x_1\), \(x_2\) and \(x_3\) directions, \(\sigma _{ij}\) is Cauchy stress tensor, \(\varepsilon _{ij}\) is linear strain tensor, e is specific internal energy, \(\pmb {\varvec{q }}\) is heat flux vector, \(\pmb {\varvec{g }}\) is temperature gradient vector, \(\phi \) is Helmholtz free energy density, \(\eta \) is entropy density and \(\theta \) is temperature.

From the conjugate pairs \(\sigma _{ij}, \overset{\,\mathbf{. }}{\varepsilon } _{ij}\) and \(\frac{\pmb {\varvec{q.g }}}{\theta }\), we can conclude that at the very least the following must hold (thermoelastic solid continua)

$$\begin{aligned} \pmb {\varvec{ {\sigma } }}= & {} \pmb {\varvec{ {\sigma } }}( \pmb {\varvec{\varepsilon }} , \theta ) \end{aligned}$$
(A6)
$$\begin{aligned} \pmb {\varvec{q }}= & {} \pmb {\varvec{q }}(\pmb {\varvec{g }}, \theta ) \end{aligned}$$
(A7)

Choices of the argument tensors for \(\phi \) and \(\eta \) are discussed in section 4 in conjunction with the derivation of the constitutive theories for \(\pmb {\varvec{ {\sigma } }}\) and \(\pmb {\varvec{q }}\).

1.2 A.2 Non-classical continuum theory incorporating internal rotations

Displacement gradient tensor \([{}^{\;d}J]\) and its decomposition into symmetric and antisymmetric tensors can be written as

$$\begin{aligned} \left[ \dfrac{\partial { \{u\} }}{\partial { \{x\} }} \right] = [{}^{\;d}J] = [{}_{s}^{\;d}J] + [{}_{a}^{\;d}J] = [\varepsilon ] + [ {}_{a}^{\,i}r ] \end{aligned}$$
(A8)

in which \([{}_{s}^{\;d}J]\) and \([{}_{a}^{\;d}J]\) are symmetric and antisymmetric tensor, thus \([\varepsilon ]\) and \([ {}_{a}^{\,i}r ]\) are strain and rotation tensors. \([ {}_{a}^{\,i}r ]\) contains rotations \({}_i\varTheta _{x_1}\), \({}_i\varTheta _{x_2}\) and \({}_i\varTheta _{x_3}\) about \(x_1\), \(x_2\) and \(x_3\) axes. Alternatively

$$\begin{aligned} \pmb {\varvec{\nabla }}\times \pmb {\varvec{u }} = \pmb {\varvec{e }}_1({}_i\varTheta _{x_1}) + \pmb {\varvec{e }}_2({}_i\varTheta _{x_2}) + \pmb {\varvec{e }}_3({}_i\varTheta _{x_3}) \end{aligned}$$
(A9)

with this definitions of \({}_i\varTheta _{x_1}\), \({}_i\varTheta _{x_2}\) and \({}_i\varTheta _{x_3}\) in (A9), we have

$$\begin{aligned} \begin{aligned}&{}_{a}^{\,i}r _{12} = {}_i\varTheta _{x_3}\\ \qquad \text {and } \quad&{}_{a}^{\,i}r _{21} = - {}_{a}^{\,i}r _{12} \end{aligned} \begin{aligned}&\quad ; \quad \\&\quad ; \quad \end{aligned} \begin{aligned}&{}_{a}^{\,i}r _{13} = -{}_i\varTheta _{x_2}\\&{}_{a}^{\,i}r _{31} = - {}_{a}^{\,i}r _{13} \end{aligned} \begin{aligned}&\quad ; \quad \\&\quad ; \quad \end{aligned} \begin{aligned}&{}_{a}^{\,i}r _{23} = {}_i\varTheta _{x_1}\\&{}_{a}^{\,i}r _{32} = - {}_{a}^{\,i}r _{23} \end{aligned} \end{aligned}$$
(A10)

all others are zero. The rotations \({}_i\varTheta _{x_1}\), \({}_i\varTheta _{x_2}\) and \({}_i\varTheta _{x_3}\) are about the axes of the triad located at a material point. If we define the rotations as a vector \(\{{}_i\varTheta \}\), \(\{{}_i\varTheta \}^T = [{}_i\varTheta _{x_1}, {}_i\varTheta _{x_2}, {}_i\varTheta _{x_3}]\), the gradient of \(\{{}_i\varTheta \}\) i.e. \([ {}^{{}_i \varTheta }J ]\) and its decomposition into symmetric and skew-symmetric tensor \([ {}_{\;s}^{{}_i \varTheta }J ]\) and \([ {}_{\;a}^{{}_i \varTheta }J ]\) can be written as

$$\begin{aligned} \left[ \dfrac{\partial {\{{}_i\varTheta \}}}{\partial {\{x\}}} \right] = [ {}^{{}_i \varTheta }J ] = [ {}_{\;s}^{{}_i \varTheta }J ] + [ {}_{\;a}^{{}_i \varTheta }J ] \end{aligned}$$
(A11)

We have the following conservation and balance laws [4, 5, 7]

$$\begin{aligned}&\rho _{_{_{0}}}(\pmb {\varvec{x }}) = |J|\rho (\pmb {\varvec{x }},t) \quad \quad \text { (CM)} \end{aligned}$$
(A12)
$$\begin{aligned}&\rho _{_{_{0}}}\frac{Dv_{i}}{Dt} - \rho _{_{_{0}}}F^{b}_i- \dfrac{\partial { {\sigma }_{ji}}}{\partial {x_{j}}} = 0 \quad \quad \text {(BLM) } \end{aligned}$$
(A13)
$$\begin{aligned}&m_{mk,m} + \epsilon _{ijk} \sigma _{ij} = 0 \quad \quad \text { (BAM)}\end{aligned}$$
(A14)
$$\begin{aligned}&\rho _{_{_{0}}}\frac{De}{Dt} + \nabla .\pmb {\varvec{q }} - {}_s {\sigma } _{ij} \overset{\,\mathbf{. }}{\varepsilon } _{ij} - m_{ij}( {}_{\;s}^{{}_i \varTheta }J _{ij}) = 0 \quad \quad \text { (FLT)}\end{aligned}$$
(A15)
$$\begin{aligned}&\rho _{_{_{0}}}\left( \frac{D\phi }{Dt}+\eta \frac{D\theta }{Dt}\right) + \frac{\pmb {\varvec{q.g }}}{\theta } - {}_s {\sigma } _{ji} \overset{\,\mathbf{. }}{\varepsilon } _{ij} - m_{ij}( {}_{\;s}^{{}_i \varTheta }J _{ij}) \le 0 \; \text { (SLT)} \end{aligned}$$
(A16)

Additionally we have used decomposition of Cauchy stress tensor \( \pmb {\varvec{\sigma }} \) into symmetric tensor \( {}_s \pmb {\varvec{\sigma }} \) and antisymmetric tensor \( {}_a \pmb {\varvec{\sigma }} \)

$$\begin{aligned} \pmb {\varvec{\sigma }} = {}_s \pmb {\varvec{\sigma }} + {}_a \pmb {\varvec{\sigma }} \end{aligned}$$
(A17)

The Cauchy moment tensor \( \pmb {\varvec{m }} \) is symmetric due to balance of moment of moments balance law, an additional balance law needed in non-classical continuum theories [4, 5, 7] due to new physics associated with rotations.

From the conjugate pairs in the entropy inequality, at the very least, the following must hold (thermoelastic solid continua)

$$\begin{aligned} {}_s \pmb {\varvec{\sigma }}= & {} {}_s \pmb {\varvec{\sigma }} ( \pmb {\varvec{\varepsilon }} , \theta )\end{aligned}$$
(A18)
$$\begin{aligned} \pmb {\varvec{m }}= & {} \pmb {\varvec{m }} ( {}_{\;s}^{{}_i \varTheta }\pmb {\varvec{J }} , \theta )\end{aligned}$$
(A19)
$$\begin{aligned} \pmb {\varvec{q }}= & {} \pmb {\varvec{q }}(\pmb {\varvec{g }}, \theta ) \end{aligned}$$
(A20)

Choice of the argument tensors for \(\phi \) and \(\eta \) can be based on the principle of equipresence [9]. The derivation of the constitutive theory for \( {}_s \pmb {\varvec{\sigma }} \) is same as for \( \pmb {\varvec{\sigma }} \) in case of CCM (section). A linear constitutive theory for \( \pmb {\varvec{m }} \) can be written as

(A21)

where is the material coefficient related to the constitutive theor for the Cauchy moment tensor.

1.3 A.3 Non-classical continuum theory incorporating internal rotations and Cosserat rotations

Let \({}_e\pmb {\varvec{\varTheta }}\) be external or Cosserat rotations (unknown) about the axes of the same triad at a material point about which internal rotations \({}_i\pmb {\varvec{\varTheta }}\) act, then the total rotations \({}_t\pmb {\varvec{\varTheta }}\) are given by

$$\begin{aligned} {}_t\pmb {\varvec{\varTheta }}= {}_i\pmb {\varvec{\varTheta }}+ {}_e\pmb {\varvec{\varTheta }}\end{aligned}$$
(A22)

and

$$\begin{aligned}{}[ {}_{a}^{\,t}r ] = [ {}_{a}^{\,i}r ] + [ {}_{a}^{\,e}r ] \end{aligned}$$
(A23)

Gradient of \({}_t\pmb {\varvec{\varTheta }}\), \( {}^{{}_t\varTheta }\pmb {\varvec{J }} \) and its decomposition into symmetric and antisymmetric tensors gives

$$\begin{aligned}{}[ {}^{{}_t \varTheta }J ]= & {} \left[ \frac{ \partial \{{}_t\varTheta \}}{ \partial \{x\}} \right] = [ {}_{\;s}^{{}_t \varTheta }J ] + [ {}_{\;a}^{{}_t \varTheta }J ] = [ {}_{\;s}^{{}_t \varTheta }J ] + [ {}_{a}^{\,t}r ] \end{aligned}$$
(A24)
$$\begin{aligned}= & {} \frac{1}{2} \left( [ {}^{{}_t \varTheta }J ] + [ {}^{{}_t \varTheta }J ]^T \right) \end{aligned}$$
(A25)
$$\begin{aligned}= & {} \frac{1}{2} \left( [ {}^{{}_t \varTheta }J ] - [ {}^{{}_t \varTheta }J ]^T \right) \end{aligned}$$
(A26)

The CM, BLM, BAM and BMM balance laws in this case are same as in section A.2. The FLT and the SLT [8, 36] are given by

$$\begin{aligned}&\rho _{_{_{0}}}\frac{De}{Dt} + \nabla \cdot \pmb {\varvec{q }} - {}_s {\sigma } _{ij} \overset{\,\mathbf{. }}{\varepsilon } _{ij} - {{}_a {\sigma }}_{ij} ( {}_{a}^{\,t}\overset{\,\mathbf{. }}{r} _{ij}) \nonumber \\&\quad - m_{ij}( {}_{\;s}^{{}_i \varTheta }J _{ij}) = 0 \quad \quad \text { (FLT)} \end{aligned}$$
(A27)
$$\begin{aligned}&\rho _{_{_{0}}}\left( \frac{D\phi }{Dt}+\eta \frac{D\theta }{Dt}\right) + \frac{\pmb {\varvec{q\cdot g }}}{\theta } \nonumber \\&\quad - {}_s {\sigma } _{ji} \overset{\,\mathbf{. }}{\varepsilon } _{ij} - {{}_a {\sigma }}_{ij} ( {}_{a}^{\,t}\overset{\,\mathbf{. }}{r} _{ij})- m_{ij}( {}_{\;s}^{{}_i \varTheta }J _{ij}) \le 0 \quad \quad \text { (SLT)}\nonumber \\ \end{aligned}$$
(A28)

The decomposition of \( \pmb {\varvec{\sigma }} = {}_s \pmb {\varvec{\sigma }} + {}_a \pmb {\varvec{\sigma }} \) (section A.2) is used here as well. The Cauchy moment tensor is symmetric in this case also (balance of moment of moments balance law [2, 3]). From the conjugate pairs in the entropy inequality (A28), at the very least the following must hold (thermoelastic solid continua)

$$\begin{aligned} {}_s \pmb {\varvec{\sigma }}= & {} {}_s \pmb {\varvec{\sigma }} ( \pmb {\varvec{\varepsilon }} , \theta ) \end{aligned}$$
(A29)
$$\begin{aligned} \pmb {\varvec{m }}= & {} \pmb {\varvec{m }} ( {}_{\;s}^{{}_t \varTheta }\pmb {\varvec{J }} , \theta )\end{aligned}$$
(A30)
$$\begin{aligned} {}_a \pmb {\varvec{\sigma }}= & {} {}_a \pmb {\varvec{\sigma }} ( {}_{a}^{\,t}\pmb {\varvec{r }} , \theta ) \end{aligned}$$
(A31)

Argument tensors for \(\varPhi \) and \(\eta \) at this stage can be established using principle of equipresence. Constitutive theories for \( \pmb {\varvec{m }} \) and \( {}_a \pmb {\varvec{\sigma }} \) in the absence of \(\theta \) reduce to [8, 36]

(A32)
(A33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surana, K.S., Mathi, S.S.C. Thermodynamically consistent thermoelastic plate and shell formulations for small deformation and small strain using non-classical continuum mechanics incorporating internal rotations. Ann. Solid Struct. Mech. 12, 33–57 (2020). https://doi.org/10.1007/s12356-020-00063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12356-020-00063-7

Keywords

Navigation