Skip to main content
Log in

The Dirichlet–Neumann problem revisited after modelling a new class of non-smooth phenomena

  • Original Article
  • Published:
Annals of Solid and Structural Mechanics

Abstract

Generalized Standard Materials are governed by maximal cyclically monotone operators and modelled by convex potentials. Géry de Saxcé’s Implicit Standard Materials are modelled by biconvex bipotentials. Analyzing the intermediate class of n-monotone materials governed by maximal n-monotone operators and modelled by Fitzpatrick’s functions, we find out that n-monotonicity is a relevant criterion for the materials characterisation and classification. Additionally, the Fitzpatrick’s functions allow to describe the thermal or mechanical equilibrium equations of n-monotone materials by primal–dual two-fields variational principles. In doing so, we are led to Dirichlet–Neumann problems that we solve by Uzawa-type algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartz S, Bauschke HH, Borwein JM, Reich S, Wang X (2007) Fitzpatrick functions, cyclic monotonicity and Rockafellar antiderivative. Nonlinear Anal 66:1198–1223

    Article  MATH  MathSciNet  Google Scholar 

  2. Bauschke HH, Lucet Y, Wang X (2007) Primal–dual symmetric intrinsic methods for finding antiderivatives of cyclically monotone operators. SIAM J Control Optim 46(6):2031–2051

    Article  MATH  MathSciNet  Google Scholar 

  3. Berga A (2012) Mathematical and numerical modelling of the non-associated plasticity of soils Part 1: the boundary value problem. Int J Non-Linear Mech 47(1):26–35

    Article  Google Scholar 

  4. Buliga M, de Saxcé G, Vallée C (2013) A variational formulation for constitutive laws described by bipotentials. Math Mech Solids 18:78–90

    Article  MathSciNet  Google Scholar 

  5. Ciarlet PG, Geymonat G, Krasucki F (2011) Legendre–Fenchel duality in elasticity. C R Math Acad Sci Paris 349(9):597–602

    Article  MATH  MathSciNet  Google Scholar 

  6. De Saxcé G, Bousshine L (2002) Implicit standard materials. In: Weichert D, Maier G (eds) Inelastic behaviour of structures under variable repeated loads–direct analysis methods. Int. Centre Mech. Sci., CISM Courses and Lectures IV, vol 432. Springer, Wien, New York

  7. De Saxcé G, Feng Z-Q (1991) New inequation and functional for contact with friction. Int J Mech Struct Mach 19(3):301–325

    Article  Google Scholar 

  8. Débordes O, Nayroles B (1976) On the theory and computation of elasto-plastic structures at plastic shakedown [French]. J de Mécanique 15(1):1–53

    MATH  Google Scholar 

  9. Fitzpatrick SP (1988) Representing monotone operators by convex functions. Miniconference on functional analysis and optimization (Canberra, August 8–24). In: Fitzpatrick SP, Giles JR (eds) Proceedings of the Centre for Mathematical Analysis. Australian National University, Canberra, vol 20, pp 59–65

  10. Greenberg MD (1978) Foundations of applied mathematics. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  11. Hackl K (1997) Generalized standard media and variational principles in classical and finite strain elastoplasticity. J Mech Phys Solids 45(5):667–688

    Article  MATH  MathSciNet  Google Scholar 

  12. Halphen B, Son NQ (1975) On the generalized standard materials [French]. J de Mécanique 14:39–63

    MATH  Google Scholar 

  13. Hjiaj M, de Saxcé G, Mroz Z (2002) A variational inequality-based formulation of the frictional contact law with a non-associated sliding rule. Eur J Mech A Solids 21(1):49–59

    Article  MATH  MathSciNet  Google Scholar 

  14. Moreau J-J (1966-1967) Fonctionnelles convexes [French]. Séminaire Jean Leray sur les équations aux dérivées partielles, Collège de France, Paris, n°2: 1–108, Reprint (2003) Istituto poligrafico e zecca dello stato S.p.A., Roma. http://archive.numdam.org

  15. Moreau J-J (1976) Application of convex analysis to the treatment of elasto-plastic systems. In: Germain P et al (eds) Lecture notes in mathematics, vol 503. Springer, Berlin

    Google Scholar 

  16. Rockafellar RT (1966) Characterization of the subdifferential of convex functions. Pac J Math 17:497–510

    Article  MATH  MathSciNet  Google Scholar 

  17. Vallée C, Lerintiu C, Chaoufi J, Fortuné D, Ban M, Atchonouglo K (2013) A class of non-associated materials: n-monotone materials—Hooke’s law of elasticity revisited. J Elast 112(2):111–138

    MATH  Google Scholar 

  18. Visintin A (2013) Variational formulation and structural stability of monotone equations. Calc Var Partial Differ Equ 47:273–317

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chaoufi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallée, C., Chaoufi, J. & Lerintiu, C. The Dirichlet–Neumann problem revisited after modelling a new class of non-smooth phenomena. Ann. Solid Struct. Mech. 6, 29–36 (2014). https://doi.org/10.1007/s12356-014-0036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12356-014-0036-0

Keywords

Navigation