Skip to main content

Numerical Study of Microstructures in Multiwell Problems in Linear Elasticity

  • Chapter
  • First Online:
Variational Views in Mechanics

Part of the book series: Advances in Mechanics and Mathematics ((ACM,volume 46))

Abstract

The free energy density of the prototypical model for solid-to-solid phase transformations with two distinct phases in the low-temperature range is given by the minimum of two quadratic potentials whose minima are attained in distinct stress-free states. Such an energy typically fails to be quasiconvex in the sense of Morrey, so that minimizers may fail to exist and minimizing sequences converge to minimizers of the corresponding relaxed problem. In this contribution, strategies for the derivation of relaxed energies are reviewed and illustrated at well-chosen model problems. More importantly, a new algorithmic approach for the computation of relaxed energies in linearized elasticity under minimal assumptions is proposed and validated based on the model examples discussed before. Additionally, phase diagrams for the relaxed energies in situations which are not included in the analytical formulas are presented and illustrate the predictive power of the algorithm. This contribution continues the discussion of a numerical scheme for the computation of relaxations in nonlinear elasticity presented in Conti and Dolzmann (J Optim Theory Appl 184:43–60, 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allaire, G., Kohn, R.V.: Explicit optimal bounds on the elastic energy of a two-phase composite in two space dimensions. Quart. Appl. Math. 51(4), 675–699 (1993). https://doi.org/10.1090/qam/1247434

    Article  MathSciNet  Google Scholar 

  2. Allaire, G., Kohn, R.V.: Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials. Quart. Appl. Math. 51(4), 643–674 (1993). https://doi.org/10.1090/qam/1247433

    Article  MathSciNet  Google Scholar 

  3. Allaire, G., Kohn, R.V.: Optimal lower bounds on the elastic energy of a composite made from two non-well-ordered isotropic materials. Quart. Appl. Math. 52(2), 311–333 (1994). https://doi.org/10.1090/qam/1276240

    Article  MathSciNet  Google Scholar 

  4. Allaire, G., Lods, V.: Minimizers for a double-well problem with affine boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 129(3), 439–466 (1999). https://doi.org/10.1017/S0308210500021454

    Article  MathSciNet  Google Scholar 

  5. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of the energy. Arch. Ration. Mech. Analy. 100, 13–52 (1987)

    Article  MathSciNet  Google Scholar 

  6. Ball, J.M., James, R.D.: Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. Lond. A 338, 389–450 (1992)

    Article  Google Scholar 

  7. Ball, J.M., Murat, F.: W 1, p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58(3), 225–253 (1984). https://doi.org/10.1016/0022-1236(84)90041-7

    Article  MathSciNet  Google Scholar 

  8. Bhattacharya, K.: Microstructure of martensite. In: Oxford Series on Materials Modelling. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  9. Boussaid, O., Kreisbeck, C., Schlömerkemper, A.: Characterizations of symmetric polyconvexity. Arch. Ration. Mech. Anal. 234(1), 417–451 (2019). https://doi.org/10.1007/s00205-019-01395-4

    Article  MathSciNet  Google Scholar 

  10. Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. R. Soc. Lond. Proc. Ser. A 458(2018), 299–317 (2002)

    Article  MathSciNet  Google Scholar 

  11. Cesana, P., DeSimone, A.: Quasiconvex envelopes of energies for nematic elastomers in the small strain regime and applications. J. Mech. Phys. Solids 59(4), 787–803 (2011)

    Article  MathSciNet  Google Scholar 

  12. Chenchiah, I.V., Bhattacharya, K.: The relaxation of two-well energies with possibly unequal moduli. Arch. Ration. Mech. Anal. 187(3), 409–479 (2008). https://doi.org/10.1007/s00205-007-0075-3

    Article  MathSciNet  Google Scholar 

  13. Chipot, M., Kinderlehrer, D.: Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103, 237–277 (1988)

    Article  MathSciNet  Google Scholar 

  14. Conti, S., Dolzmann, G.: Relaxation of a model energy for the cubic to tetragonal phase transformation in two dimensions. Math. Models. Methods App. Sci. 24, 2929–2942 (2014). https://doi.org/10.1142/S0218202514500419

    Article  MathSciNet  Google Scholar 

  15. Conti, S., Dolzmann, G.: An adaptive relaxation algorithm for multiscale problems and application to nematic elastomers. J. Mech. Phys. Solids 113, 126–143 (2018). https://doi.org/10.1016/j.jmps.2018.02.001

    Article  MathSciNet  Google Scholar 

  16. Conti, S., Dolzmann, G.: Numerical study of microstructures in single-slip finite elastoplasticity. J. Optim. Theory Appl. 184, 43–60 (2020). https://doi.org/10.1007/s10957-018-01460-0

    Article  MathSciNet  Google Scholar 

  17. Conti, S., Ortiz, M.: Dislocation microstructures and the effective behavior of single crystals. Arch. Rat. Mech. Anal. 176, 103–147 (2005). https://doi.org/10.1007/s00205-004-0353-2

    Article  MathSciNet  Google Scholar 

  18. Conti, S., Dolzmann, G., Kirchheim, B., Müller, S.: Sufficient conditions for the validity of the Cauchy-Born rule close to SO(n). J. Eur. Math. Soc. (JEMS) 8, 515–530 (2006). https://doi.org/10.4171/JEMS/65

  19. Dacorogna, B.: Direct Methods in the Calculus of Variations, vol. 78. Springer, Berlin (2007)

    MATH  Google Scholar 

  20. Firoozye, N.B.: Optimal use of the translation method and relaxations of variational problems. Comm. Pure Appl. Math. 44(6), 643–678 (1991). https://doi.org/10.1002/cpa.3160440603

    Article  MathSciNet  Google Scholar 

  21. Firoozye, N.B., Kohn, R.V.: Geometric parameters and the relaxation of multiwell energies. In: Microstructure and Phase Transition. IMA Volumes in Mathematics and Its Applications, vol. 54, pp. 85–109. Springer, New York (1993). https://doi.org/10.1007/978-1-4613-8360-4_6

  22. Grabovsky, Y.: Bounds and extremal microstructures for two-component composites: a unified treatment based on the translation method. Proc. Roy. Soc. London Ser. A 452(1947), 919–944 (1996). https://doi.org/10.1098/rspa.1996.0046

    Article  MathSciNet  Google Scholar 

  23. Khan, M.S., Hackl, K.: Modeling of microstructures in a Cosserat continuum using relaxed energies. In: Trends in Applications of Mathematics to Mechanics. Springer INdAM Series, vol. 27, pp. 103–125. Springer, Cham (2018)

    Google Scholar 

  24. Kohn, R.V.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3(3), 193–236 (1991). https://doi.org/10.1007/BF01135336

    Article  MathSciNet  Google Scholar 

  25. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems. II. Comm. Pure Appl. Math. 39, 139–182 (1986). https://doi.org/10.1002/cpa.3160390202

    Article  MathSciNet  Google Scholar 

  26. Lurie, K.A., Cherkaev, A.V.: On a certain variational problem of phase equilibrium. In: Material Instabilities in Continuum Mechanics (Edinburgh, 1985–1986), pp. 257–268. Oxford Science Publlication, Oxford University Press, New York (1988)

    Google Scholar 

  27. Morrey, Jr., C.B.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2, 25–53 (1952)

    Article  MathSciNet  Google Scholar 

  28. Ortiz, M., Repetto, E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)

    Article  MathSciNet  Google Scholar 

  29. Palombaro, M., Smyshlyaev, V.P.: Relaxation of three solenoidal wells and characterization of extremal three-phase H-measures. Arch. Ration. Mech. Anal. 194(3), 775–722 (2009). https://doi.org/10.1007/s00205-008-0204-7

    Article  MathSciNet  Google Scholar 

  30. Pipkin, A.C.: Elastic materials with two preferred states. Quart. J. Mech. Appl. Math. 44(1), 1–15 (1991). https://doi.org/10.1093/qjmam/44.1.1

    Article  MathSciNet  Google Scholar 

  31. Šverák, V.: New examples of quasiconvex functions. Arch. Rational Mech. Anal. 119(4), 293–300 (1992). https://doi.org/10.1007/BF01837111

    Article  MathSciNet  Google Scholar 

  32. Tang, Q., Zhang, K.: Bounds for effective strains of geometrically linear elastic multiwell model. J. Math. Anal. Appl. 339(2), 1264–1276 (2008). https://doi.org/10.1016/j.jmaa.2007.07.051

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG German Research Foundation) through SFB 1060, “The mathematics of emergent effects,” project 211504053, and SPP 2256 “Variational Methods for Predicting Complex Phenomena in Engineering Structures and Materials,” projects 441211072 and project 441468770.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Conti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Conti, S., Dolzmann, G. (2021). Numerical Study of Microstructures in Multiwell Problems in Linear Elasticity. In: Mariano, P.M. (eds) Variational Views in Mechanics. Advances in Mechanics and Mathematics(), vol 46. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-90051-9_1

Download citation

Publish with us

Policies and ethics