Skip to main content
Log in

Construction and justification of Paris-like fatigue laws from Dugdale-type cohesive models

  • Original Article
  • Published:
Annals of Solid and Structural Mechanics

Abstract

We propose a construction of fatigue laws from cohesive forces models in the case of a crack submitted to a mode I cyclic loading. Taking the cumulated opening as the memory variable and the surface energy density associated with Dugdale’s model, we explicitly construct the fatigue law which gives the crack growth rate by cycle dℓ/dN in terms of the stress intensity factor K I . In particular, we recover a Paris law with an exponent 4, i.e., dℓ/dN = C K 4 I , when K I is small, the coefficient C being explicitly expressed in terms of the material parameters. Furthermore, the law can be applied in the full range of values of K I and can be extended to non simple cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abdelmoula R, Marigo J-J, Weller T (2009) Construction des lois de fatigue à partir de modèles de forces cohésives: cas de fissures en mode I. Comptes Rendus Mécanique 337(3):166–172

    Article  Google Scholar 

  2. Abdelmoula R, Marigo J-J, Weller T (2009) Construction d’une loi de fatigue à partir d’un modèle de forces cohésives: cas d’une fissure en mode III. Comptes Rendus Mécanique 337(1):53–59

    Article  MATH  Google Scholar 

  3. Abdul-Baqi A, Schreurs PJG, Geers MGD (2005) Fatigue damage modeling in solder interconnects using a cohesive zone approach. Int J Sol Struct 42:927–942

    Article  MATH  Google Scholar 

  4. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 55–129

  5. Bourdin B, Francfort GA, Marigo J-J (2008) The variational approach to fracture. J Elast 91(1–3):5–148

    Article  MATH  MathSciNet  Google Scholar 

  6. Bui HD (1978) Mécanique de la rupture fragile. Masson

  7. Charlotte M, Laverne J, Marigo J-J (2006) Initiation of cracks with cohesive force models: a variational approach. Eur J Mech A-Solid 25(4):649–669

    Article  MATH  MathSciNet  Google Scholar 

  8. Cherepanov GP (1979) Mechanics of brittle fracture. McGraw-Hill International Book Company, London

    MATH  Google Scholar 

  9. Dal Maso G, Francfort GA, Toader R (2005) Quasistatic crack growth in nonlinear elasticity. Arch Ration Mech Anal 176(2):165–225

    Article  MATH  MathSciNet  Google Scholar 

  10. Dal Maso G, Toader R (2002) A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch Ration Mech Anal 162:101–135

    Article  MATH  MathSciNet  Google Scholar 

  11. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–108

    Article  Google Scholar 

  12. Ferdjani H, Abdelmoula R, Marigo J-J (2007) Insensitivity to small defects of the rupture of materials governed by the Dugdale model. Continuum Mech Therm 19(3-4):191–210

    Article  MATH  MathSciNet  Google Scholar 

  13. Ferriero A (2008) Quasi-static evolution for fatigue debonding. ESAIM Control Optim Calc Var 4(2):233–253

    Article  MathSciNet  Google Scholar 

  14. Francfort GA, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  MATH  MathSciNet  Google Scholar 

  15. Francfort GA, Mielke A (2006) Existence results for a class of rate-independent material models with nonconvex elastic energies. J Reine Angew Math 595:55–91

    MATH  MathSciNet  Google Scholar 

  16. Giacomini A (2005) Size effects on quasi-static growth of cracks. SIAM J Math Anal 36(6):1887–1928 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  17. Griffith A (1920) The phenomena of rupture and flow in solids. Phil Trans Roy Soc Lond CCXXI(A):163–198

    Google Scholar 

  18. Jaubert A, Marigo J-J (2005) L’approche variationnelle de la fatigue : des premiers résultats. Comptes Rendus Mécanique 333(7):550–556

    Article  Google Scholar 

  19. Jaubert A, Marigo J-J (2006) Justification of Paris-type fatigue laws from cohesive forces model via a variational approach. Continuum Mech Therm V18(1):23–45

    Article  MathSciNet  Google Scholar 

  20. Laverne J, Marigo J-J (2004) Global approach, relative minima and yield criterion in fracture mechanics. Comptes Rendus Mécanique 332(4):313–318

    Article  Google Scholar 

  21. Lawn B (1993) Fracture of brittle solids. Cambridge solid state science series, 2nd edn. Cambridge University press, Cambridge

    Google Scholar 

  22. Maiti S, Geubelle P (2005) A cohesive model for fatigue failure of polymers. Eng Fract Mech 72(5):691–708

    Article  Google Scholar 

  23. Marigo J-J (1985) Modelling of brittle and fatigue damage for elastic material by growth of microvoids. Eng Fract Mech 21(4):861–874

    Article  Google Scholar 

  24. Marigo J-J, Truskinovky L (2004) Initiation and propagation of fracture in the models of Griffith and Barenblatt. Continuum Mech Therm 16(4):391–409

    Article  MATH  Google Scholar 

  25. Mielke A (2005) Evolution of rate-independent systems. In: Evolutionary equations, volume II of Handb Differ Equ. Elsevier/North-Holland, Amsterdam, pp 461–559

  26. Muskhelishvili NI (1953) Some basic problems of mathematical theory of elasticity, 2nd edn. P. Noordhoff Ltd, Groningen

    MATH  Google Scholar 

  27. Needleman A (1992) Micromechanical modelling of interface decohesion. Ultramicroscopy 40:203–214

    Article  MathSciNet  Google Scholar 

  28. Nguyen O, Repetto EA, Ortiz M, Radovitzki RA (2001) A cohesive model of fatigue crack growth. Int J Fract 110:351–369

    Article  Google Scholar 

  29. Nguyen QS (2000) Stability and nonlinear solid mechanics. Wiley, London

    Google Scholar 

  30. Paris PC, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng 85:528–534

    Google Scholar 

  31. Paris PC, Gomez MP, Anderson WE (1961) A rational analytic theory of fatigue. Trend Eng 13(8):9–14

    Google Scholar 

  32. Roe KL, Siegmund T (2002) An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng Fract Mech 70:209–232

    Article  Google Scholar 

  33. Siegmund T (2004) A numerical study of transient fatigue crack growth by use of an irreversible cohesive zone model. Int J Fatigue 26(9):929–939

    Article  Google Scholar 

  34. Suresh S (1998) Fatigue of materials. Cambridge Editions, Cambridge

    Google Scholar 

  35. Weertman J (1966) Rate of growth of fatigue cracks calculated from the theory of infinitesimal dislocations distributed on a plane. Int J Frac Mech 2:460–467

    Google Scholar 

  36. Yang B, Mall S, Ravi-Chandar K (1999) A cohesive zone model for fatigue crack growth in quasibrittle materials. Int J Sol Struct 38:3927–3944

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Marigo.

Appendix 1: The generic problem in the neighborhood of the crack tip

Appendix 1: The generic problem in the neighborhood of the crack tip

The plane is equipped with the cartesian coordinate system (xy), the associated canonical basis is (i, j) and \(z=x+{\tt i} y\) denotes the affixe of the complex number associated with the point (xy). Let \({\tt K}\), \({\tt L}\) and \({\tt D}\) be three given real numbers with \({\tt K}>0\) and \({\tt D}>0\). Let us consider the following plane-strain elastic problem whose unknowns are the displacement and stress field U and \(\varvec{\Upsigma}\):

$$ \begin{aligned} &{\bf div}\,\varvec{\Upsigma}=0, \quad \varvec{\Upsigma}=\lambda \hbox{div}{\bf U I}+2\mu \varvec{\varepsilon} ({\bf U})\quad\hbox{in}\quad {\mathbb{R}}^2\setminus(-\infty,{\tt L}+{\tt D})\times\{0\},\\ &\Upsigma_{12}=\Upsigma_{22}=0\quad\hbox{ on }\quad (-\infty,{\tt L})\times \{0\}, \quad \quad \Upsigma_{12}=0,\Upsigma_{22}=\sigma_c \quad \hbox{ on } \quad ({\tt L, L}+{\tt D})\times \{0\}, \end{aligned} $$

with the condition at infinity

$$ \hbox{lim}_{r\to\infty}\left({\bf U}(x,y)-\frac{\tt K}{2\mu} \sqrt{\frac{r}{2\pi}}{\bf u}^S(\theta)\right)=0 $$

where \(x=r\cos\theta, y=r\sin\theta\) and \({\bf u}^S(\theta)=(3-4\nu-\cos\theta)\left(\cos \frac{\theta}{2} {\bf i}+ \sin \frac{\theta}{2} {\bf j}\right)\). This problem admits a unique solution which can be obtained in a closed form by using the theory of complex potentials, cf [26]. We simply recall here the main results. The fields U et \(\varvec{\Upsigma}\) are related to the function φ(z) of the complex variable z by

$$ \begin{aligned} \Upsigma_{22}(x,y)-{\tt i}\Upsigma_{12}(x,y)&=\varphi^\prime(z)+\varphi^\prime\left(\overline{z}\right)+ \left(z-\overline{z}\right)\overline{\varphi^{\prime\prime}(z)},\\ 2\mu\left(U_1(x,y)+{\tt i} U_2(x,y)\right)&=(3-4\nu)\varphi(z)-\varphi\left(\overline{z}\right)- \left(z-\overline{z}\right) \overline{\varphi^\prime(z)}, \end{aligned} $$

φ being holomorphic in the plane without the half-line \((-\infty,\,{\tt L}+{\tt D})\times\{0\}\), the bar denoting the complex conjugate. By a standard procedure, we get

$$ \varphi^\prime(z)=\frac{\sigma_c}{2\pi\sqrt{z-{\tt L}-{\tt D}}}\int\limits_{{\tt L}}^{{\tt L}+{\tt D}}\frac{\sqrt{{\tt L}+{\tt D}-x}}{x-z} dx+\frac{\tt K}{2\sqrt{2\pi( z-{\tt L}-{\tt D})}}. $$
(51)

Near the tip \(z={\tt L}+{\tt D}, \varphi^\prime(z)\) behaves like

$$ \varphi^\prime(z)\approx \frac{\sqrt{2\pi}{\tt K}-4\sigma_c\sqrt{{\tt D}}}{4\pi\sqrt{z-{\tt L}-{\tt D}}} $$

and hence the stresses are singular with the usual singularity in \(1/\sqrt{r}\) except if the factor \(\sqrt{2\pi}{\tt K}-4\sigma_c\sqrt{{\tt D}}\) vanishes. Specifically, the jump of the normal displacement just behind the tip \(x={\tt L}+{\tt D}\) and the normal stress just ahead the tip read as

$$ \lbrack\!\lbrack U_2 \rbrack\!\rbrack (r)=\frac{2\left(1-\nu^2\right)}{\pi E}\left(\sqrt{2\pi}{\tt K}-4\sigma_c\sqrt{{\tt D}}\right)\sqrt{r}+\cdots,\quad \Upsigma_{22}(r)=\frac{\sqrt{2\pi}{\tt K}-4\sigma_c\sqrt{{\tt D}}}{4\pi\sqrt{r}}+\cdots. $$

Therefore, if it is required that \(\Upsigma_{22}\le\sigma_c\) on the half-line \(({\tt L}+{\tt D},+\infty) \times \{0\},\) then \({\tt K}\) and \({\tt D}\) must be such that \(\sqrt{2\pi}{\tt K}\le4\sigma_c\sqrt{{\tt D}}\). On the other hand, if it is required that \(\lbrack\!\lbrack U_2 \rbrack\!\rbrack \ge 0\) holds everywhere (by a non interpenetration condition, for instance), then \({\tt K}\) and \({\tt D}\) must satisfy the converse inequality \(\sqrt{2\pi}{\tt K}\ge4\sigma_c\sqrt{{\tt D}}\). Accordingly, in order that both conditions are satisfied, the solution must be non singular at the tip \({\tt L}+{\tt D}\). In such a case \({\tt D}\) and \({\tt K}\) are related by

$$ {\tt K}=4\sigma_c\sqrt{\frac{\tt D}{2\pi}}. $$
(52)

Assuming from now on that (52) holds, (51) becomes

$$ {\varphi}^\prime(z)=\frac{\sigma_c}{2} + \frac{{\tt i} \sigma_c}{2\pi} \left(\hbox{Log}\left(\sqrt{{\tt D}}+{\tt i}\sqrt{z-{\tt L}-{\tt D}}\right)-\hbox{Log}\left(\sqrt{{\tt D}}-{\tt i}\sqrt{z-{\tt L}-{\tt D}}\right)\right). $$
(53)

In (53), Log denotes the principal determination of the complex logarithm. After some calculations, one obtains that the normal jump of the displacement along the x-axis reads as

$$ \lbrack\!\lbrack U_2 \rbrack\!\rbrack (x)= V \left(\frac{x-{\tt L}} {\tt D}\right)\frac{8\left(1-\nu^2\right)}{\pi}\frac{\sigma_c}{E}{\tt D},$$
(54)

where V denotes the dimensionless real-valued function defined by

$$ V(\zeta)= \left\{ \begin{array}{ll} \sqrt{1-\zeta}-\zeta\ln\left(1+\sqrt{1-\zeta}\right)+\zeta\ln \sqrt{|\zeta|}&\hbox{if }\; \zeta\le 1, \zeta\ne0\\ 0&\hbox{if }\;\zeta\ge 1 \end{array} \right. $$
(55)

and V(0) = 1. Let us note that V is continuously differentiable everywhere (even at ζ = 0 and ζ = 1), is concave for ζ ≤ 0 and is strictly decreasing from ∞ to 0 when ζ goes from −∞ to 1. When ζ→ −∞, \(V(\zeta)=2\sqrt{|\zeta|}+o(1)\). The non interpenetration condition \(\lbrack\!\lbrack U_2 \rbrack\!\rbrack \ge 0\) is satisfied everywhere. The normal stress \(\Upsigma_{22}\) along the half-line \(({\tt L}+{\tt D},+\infty) \times \{0\}\) is given by

$$ \Upsigma_{22}(x,0)=\left(1-\frac{2}{\pi} \arcsin\sqrt{1-\frac{\tt D}{x-{\tt L}}}\right)\sigma_c. $$
(56)

It decreases from σ c to 0 and, therefore, the condition \(\Upsigma_{22}\le\sigma_c\) is satisfied.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelmoula, R., Marigo, JJ. & Weller, T. Construction and justification of Paris-like fatigue laws from Dugdale-type cohesive models. Ann. Solid Struct. Mech. 1, 139–158 (2010). https://doi.org/10.1007/s12356-010-0011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12356-010-0011-3

Keywords

Navigation