Skip to main content
Log in

Elastic–plastic analysis of rotating disks having non-linearly variable thickness: residual stresses by overspeeding and service stress state reduction

  • Original Article
  • Published:
Annals of Solid and Structural Mechanics

Abstract

Two models for evaluation of elastic and elastic–plastic stress and strain in non-linear variable thickness rotating disks, either solid or annular, subjected to such a rotational speed to determine stresses beyond yielding are presented. The first model regards the elastic field and the second concerns the elastic–plastic field, assuming that material hardening is isotropic and follows a most general hardening power-law. In the elastic region, a non-homogeneous hypergeometric differential equation is obtained. Such differential equation, which solves the elastic problem in closed form for non-linear variable thickness disks, with thickness given by the power of a linear function which may define a fourfold infinity of profiles, is integrated in closed form. As concerns the elastic–plastic analysis, first of all the introduction is made of a correlation between equivalent plastic strain and equivalent stress according to Von Mises, which is more general than those known from literature. In the case of isotropic hardening a second-order, non-homogeneous, non-linear differential equation is found, which governs the stress state in the plastic region of the disk. The procedure allows to calculate stress and displacement states in the two regions—plastic and elastic—of the disk subjected to prestressing by overspeeding. Several examples of disks, also prestressed by overspeeding, are considered (annular and solid, convex or concave, and linear tapered disks); the matching of results of the theoretical model and those obtained by means of FEA is very good. Lastly, the residual stress state can be found in a prestressed disk by overspeeding and the stress state in the actual operating condition in the same disk is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdul-Mihsein MJ, Bakr AA, Parker AP (1985) Stresses in axisymmetric rotating bodies determined by the boundary integral equation method. J Strain Anal 20(2):79–86

    Article  Google Scholar 

  2. Abramowitz M, Stegun IH (1972) Handbook of mathematical functions. Dover Publications, New York

    MATH  Google Scholar 

  3. Banerjee PK, Butterfield R (1981) Boundary element methods in engineering science. McGraw-Hill Inc, New York

    MATH  Google Scholar 

  4. Burr AH (1982) Mechanical analysis and design. Elsevier, New York

    Google Scholar 

  5. Calderale PM (1960) Tavole per il calcolo delle sollecitazioni centrifughe e termiche in dischi a profilo iperbolico e a spessore costante, aventi peso specifico e temperatura variabili lungo il raggio. Ingegneria Meccanica IX(11):39–43

  6. Eraslan AN (2002) Von Mises yield criterion and nonlinearly hardening variable thickness rotating annular disks with rigid inclusion. Mech Res Commun Sci 29(5):339–350

    Article  MATH  Google Scholar 

  7. Eraslan AN (2003) Elastic-plastic deformations of rotating variable thickness annular disks with free, pressurized and radially constrained boundary conditions. Int J Mech Sci 45(4):643–667

    Article  MATH  Google Scholar 

  8. Eraslan AN, Argeşo H (2002) Limit angular velocities of variable thickness rotating disks. Int J Solids Struct 39(12):3109–3130

    Article  MATH  Google Scholar 

  9. Eraslan AN, Orçan Y (2002) Elastic-plastic deformation of a rotating solid disk of exponentially varying thickness. Mech Mater 34(7):423–432

    Article  Google Scholar 

  10. Eraslan AN, Orçan Y (2002) On the rotating elastic-plastic solid disks of variable thickness having concave profiles. Int J Mech Sci 44(7):1445–1466

    Article  MATH  Google Scholar 

  11. Eraslan AN, Orçan Y (2002) A parametric analysis of rotating variable thickness elastoplastic annular disks subjected to pressurized and radially constrained boundary conditions. Turk J Eng Environ Sci 28(6):381–395

    Google Scholar 

  12. Eraslan AN, Orçan Y, Güven U (2005) Elastoplastic analysis of nonlinearly hardening variable thickness annular disks under external pressure. Mech Res Commun 32(3):306–315

    Article  Google Scholar 

  13. Faupel JH (1964) Engineering design: a synthesis of stress analysis and materials engineering. Wiley, New York

    Google Scholar 

  14. Fenner DN (1987) Engineering stress analysis a finite element approach with FORTRAN 77 software. E. Horwood, Halsted Press, Chichester

  15. Forsyth AR (1996) A treatise of differential equations, 6th edn. Dover Publications, New York

    Google Scholar 

  16. Gamer U (1984) Elastic-plastic deformation of the rotating solid disk. Archiv Appl Mech (Ingenieur Archiv) 54(5):345–354

    MATH  Google Scholar 

  17. Gamer U, Mack W (1985) Thermal stress in an elastic–plastic disk exposed to a circular heat source. J Appl Math Phys 36:568–580

    Article  MATH  Google Scholar 

  18. Giovannozzi R (1956) Calculation, tabulation and uses of some functions occurring in the theory of the conical disc subjected to centrifugal and thermic stress. In: Proceedings of II Congresso Aeronautico Europeo, Scheveningen, 30.1-30.12

  19. Giovannozzi R (1965) Costruzione di Macchine, vol. II, 4th ed., Pàtron, Bologna

  20. Güven U (1998) Elastic-plastic stress distribution in a rotating hyperbolic disk with rigid inclusion. Int J Mech Sci 40(1):97–109

    Article  MATH  Google Scholar 

  21. Güven U (1998) Stress distribution in a linear hardening annular disk of variable thickness subjected to external pressure. Int J Mech Sci 40(6):589–601

    Article  MATH  Google Scholar 

  22. Honegger von E (1927) Festigkeitsberechnung von Rotierenden Konischen Scheiben. Zeitschrift für Angewandte Mathematik und Mechanik. pp (120–128)

  23. Klein F (1933) Vorlesungen über die hypergeometrische Funktion. J. Springer, Berlin

    Google Scholar 

  24. László F (1925) Geschleuderte Umdrehungskörper im Gebiet bleibender Deformation. Zietschrift für Angewandte Mathematik and Mechanik ZAMM 5:281–293

    Article  MATH  Google Scholar 

  25. Lenard J, Haddow JB (1972) Plastic collapse speeds for rotating cylinders. Int J Mech Sci 14(5):285–292

    Article  Google Scholar 

  26. Love AEH (1944) A treatise on the mathematical theory of elasticity. Dover Publication, New York

    MATH  Google Scholar 

  27. Ludwik P (1909) Elemente der Technologischen Mechanik. Springer, Berlin

    MATH  Google Scholar 

  28. Ma G, Hao H, Miyamoto Y (2001) Limit angular velocity of rotating disc with unified yield criterion. Int J Mech Sci 43(5):1137–1153

    Article  MATH  Google Scholar 

  29. Manson SS (1947) Determination of elastic stresses in gas-turbine disks. NACA Report 871:241–251

    Google Scholar 

  30. Millenson MB, Manson SS (1948) Determination of stresses in gas-turbine disks subjected to plastic flow and creep. NACA Report 906:277–292

    Google Scholar 

  31. Orçan Y, Eraslan AN (2002) Elastic-plastic stresses in linearly hardening rotating solid disks of variable thickness. Mech Res Commun 29(4):269–281

    Article  MATH  Google Scholar 

  32. Ramberg W, Osgood WR (1943) Description of stress-strain curves by three parameters. NACA Technical Note 902

  33. Rees DWA (1999) Elastic–plastic stresses in rotating disks by Von Mises and Tresca. Zeitschrift fur Angewandte Mathematik und Mechanik ZAMM 79(4):281–288

    Article  MATH  MathSciNet  Google Scholar 

  34. Reid SR (1972) On the influence of acceleration stresses on the yielding of disks of uniform thickness. Int J Mech Sci 14(11):755–763

    Article  Google Scholar 

  35. Saada AS (1974) Elasticity: theory and applications. Pergamon Press, New York

    MATH  Google Scholar 

  36. Smirnov V (1972) Cours de Mathématiques Supérieures. Editions MIR, Moscow

    Google Scholar 

  37. Stanley Thompson A, Lester PA (1946) Stresses in rotating disks at high temperatures. J Appl Mech 13(1):A45–A52

    Google Scholar 

  38. Sterner SC, Saigal S, Kistler W, Dietrich DE (1994) A unified numerical approach for the analysis of rotating disks including turbine rotors. Int J Solids Struct 31(2):269–277

    Article  Google Scholar 

  39. Swift HW (1952) Plastic instability under plane stress. J Mech Phys Solids 1:1–18

    Article  Google Scholar 

  40. Timoshenko SP, Goodier JN (1970) Theory of easticity, 3rd edn. McGraw Hill, New York

    Google Scholar 

  41. Tricomi FG (1967) Equazioni differenziali, 4th edn. Boringhieri, Turin

    Google Scholar 

  42. Ugural SC, Fenster SK (1987) Advanced strength and applied elasticity. Elsevier, New York

    Google Scholar 

  43. Vivio F, Vullo V (2007) Elastic stress analysis of rotating converging conical disks subjected to thermal load and having variable density along the radius. Int J Solids Struct 44:7767–7784

    Article  MATH  Google Scholar 

  44. Vullo V, Vivio F (2008) Elastic stress analysis of non-linear variable thickness rotating disks subjected to thermal load and having variable density along the radius. Int J Solids Struct 45:5337–5355

    Article  MATH  Google Scholar 

  45. You LH, Zhang JJ (1999) Elastic-plastic stresses in a rotating solid disk. Int J Mech Sci 41(3):269–282

    Article  MATH  Google Scholar 

  46. You LH, Long SY, Zang JJ (1997) Perturbation solution of rotating solid disks with nonlinear strain–hardening. Mech Res Commun 24(6):649–658

    Article  MATH  Google Scholar 

  47. You LH, Tang YY, Zhang JJ, Zheng CY (2000) Numerical analysis of elastic-plastic rotating disks with arbitrary variable thickness and density. Int J Solids Struct 37(52):7809–7820

    Article  MATH  Google Scholar 

  48. Zimmermann RW, Lutz MP (1999) Thermal stresses and thermal expansion in a uniformly heated functionally graded cylinder. J Therm Stress 22:177–188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Vivio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vivio, F., Vullo, L. Elastic–plastic analysis of rotating disks having non-linearly variable thickness: residual stresses by overspeeding and service stress state reduction. Ann. Solid Struct. Mech. 1, 87–102 (2010). https://doi.org/10.1007/s12356-010-0007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12356-010-0007-z

Keywords

Navigation