Skip to main content
Log in

The Effect on Ethanol Production Using Red Seaweed Extracts in Sugarcane Juice Treatment

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The present study assessed the clarification of sugarcane juice using different flocculants and their effect on ethanol yield. The extracted sugarcane samples (CTC072361—harvest 2022/2023) were adjusted to 16% Brix, and calcium hydroxide (56 g L−1) was added with pH 7.0 ± 0.4 and boiled. The clarification test was done, using the anionic synthetic polymer, commercial organic flocculant and red seaweed extract (RSE—Kappaphycus alvarezii) for sedimentation of impurities. After a retention time of 20 min, the clarified broths were collected by siphoning and analyzed for Brix, total reducing sugars (TRS), pH, total acidity, and total phenolic compounds. The extracted sugarcane juice was analyzed for Brix, TRS, reducing sugars, Pol, pH, purity, acidity, ash, total phenolic compounds, turbidity, and starch content. The clarified juices were standardized to obtain the wort and analyzed for TRS and total acidity. The worts were processed for fermentation process, using CAT-1 yeast (30 g L−1). After fermentation (Brix ≤ 1%), the wine samples were collected and analyzed for total residual reducing sugars, pH, total acids, alcohol content and glycerol, with subsequent calculation of fermentation efficiency. The use of red algae extracts (Kappaphycus alvarezii) was found efficient as a bioflocculant for removing impurities in sugarcane juice and promoted a similar clarification process with synthetic and organic flocculants. The use of red seaweed resulted in as fermentation efficiency 93.27% and represented up to 3.4% higher than the other treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Albuquerque, L.M. 2011. Processo de fabricação de açúcar, 2nd ed. Recife: UFPE.

    Google Scholar 

  • Alcantara, Giovanni U., Lucas C. Nogueira, Leonardo A. Stringaci, Sâmya M. Moya, and Gustavo H. Gravatim Costa. 2020. Brazilian “flex mills”: Ethanol from sugarcane molasses and corn mash. BioEnergy Research. https://doi.org/10.1007/s12155-019-10052-3.

    Article  Google Scholar 

  • Barbosa, José C., and Walter Maldonado Junior. 2015. Experimentação Agronômica & AgroEstat: Sistema para análises estatísticas de ensaios agronômicos. Jaboticabal: FUNEP.

    Google Scholar 

  • Basso, Luiz C., Thiago O. Basso, and Saul N. Rocha. 2011. Ethanol production in Brazil: The industrial process and its impact on yeast fermentation. Biofuel production. https://edisciplinas.usp.br/pluginfile.php/5250932/mod_resource/content/1/BASSO%202011a%20InTech-Ethanol_production_in_brazil_the_industrial_process_and_its_impact_on_yeast_fermentation.pdf. Accessed 3 Aug. 2022.

  • Camolez, M.A., and Márcia. J. R. Mutton. 2005. Influência de microorganismos contaminantes sobre o processo fermentativo. Piracicaba: STAB-Sociedade dos Técnicos Açucareiros e Alcooleiros do Brasil.

    Google Scholar 

  • Companhia Nacional de Abastecimento (Brasil). 2022. Acompanhamento da safra brasileira: Cana-de-açúcar – Terceiro levantamento | dezembro/2022. Conab, Brasília. https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar/item/download/45671_7a038e9b1579f67261d6351884075e16. Accessed 10 Jan 2023.

  • Copersucar. 2001. Manual de controle químico da fabricação de açúcar. Piracicaba.

  • Costa, Gustavo H. Gravatim., Cristhyane M. Freita, Franciele Q. Mendes, Juliana P. Roviero, and Márcia. J. R. Mutton. 2018. Acrylamide replaced by moringa extract in sugar production. Food Science and Technology 4: 591–599.

    Article  Google Scholar 

  • CTC. 2005. Manual de métodos de análises para açúcar. Piracicaba: Centro de Tecnologia Canavieira, Laboratório de Analyses.

    Google Scholar 

  • Delgado, A.A., and M.A.A. Cesar. 1977. Elementos de tecnologia e engenharia do açúcar de cana. Sertãozinho: Zanini.

    Google Scholar 

  • Doherty, Willian O. S. 2011. Improved sugar cane juice clarification by understanding calcium oxide-phosphate-sucrose systems. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf1043212.

    Article  PubMed  Google Scholar 

  • Fernandes, Antônio C. 2003. Cálculos na agroindústria de cana-de-açúcar. Piracicaba: EME/STAB.

    Google Scholar 

  • Freita, Cristhyane M., Lidyane A.. Freita, Letícia F. Tralli, Aline F. Silva, Franciele Q. Mendes, Vitor Teixeira, and Márcia. J. R. Mutton. 2017. Bioethanol production with different dosages of the commercial Acrylamide polymer compared to a Bioextract in clarifying sugarcane juice. Annals of the Brazilian Academy of Sciences. https://doi.org/10.1590/0001-3765201720170473.

    Article  Google Scholar 

  • Folin, Otto, and Vintila Ciocalteu. 1927. On tyrosine and tryptophane determinations in proteins. The Journal of Biological Chemistry 73 (2): 627–650.

    Article  CAS  Google Scholar 

  • Hugot, E. 1969. Manual da engenharia açucareira. São Paulo: Mestre Jou.

    Google Scholar 

  • Honig, P. 1969. Princípios de tecnologia azucarera. Mexico: Companhia Editorial Continental.

    Google Scholar 

  • IEA. 2021. International Energy Agency. Statistics report—Key World Energy Statistics 2021. Paris: IEA Publications. https://www.iea.org/reports/key-world-energy-statistics-2021. Accessed 3 July 2022.

  • Lee, S.S., F.M. Robinson, and H.Y. Wong. 1981. Rapid determination of yeast viability. In: Biotechnology bioenergy symposium. https://www.osti.gov/biblio/5354410. Accessed 3 July 2022.

  • Lima, Urgel A., Luiz C. Basso, and Henrique V. Amorim. 2001. Biotecnologia industrial: Processos fermentativos e enzimáticos, 1–43. São Paulo: Edgard Blücher.

    Google Scholar 

  • Macri, Rita C. Vieira., Gustavo H. G. Costa, Nayara A. Montijo, Aline F. Silva, and Márcia. J. R. Mutton. 2014. Moringa extracts used in sugarcane juice treatment and effects on ethanolic fermentation. African Journal of Biotechnology 13 (42): 4124–4130. https://doi.org/10.5897/AJB2014.14025.

    Article  Google Scholar 

  • Makur, Majur M., Ramesh Duraisamy, and Tewodros Birhau. 2019. Clarifying capacity of eco-friendly nano cao and okra (Abelmoschus esculentus) extract on the processing of sugarcane juice: A review. International Research Journal of Science and Technology 1 (1): 21–30. https://doi.org/10.46378/irjst.2019.010104.

    Article  Google Scholar 

  • Masson, Igor S., Gustavo H. G. Costa, Juliana P. Roviero, Lidyane A. Freita, Miguel A. Mutton, and Márcia J. R. Mutton. 2015. Produção de bioetanol a partir da fermentação de caldo de sorgo sacarino e cana-de-açúcar. Ciência Rural 45 (9): 695–1700. https://doi.org/10.1590/0103-8478cr20130549.

    Article  CAS  Google Scholar 

  • Mutton, Márcia J. Rossini., Graciany Garcia, Vitor Teixeira, Aline F. Silva, Gustavo H. G. Costa, and Osania E. Ferreira. 2020. The clarification of sugarcane juice and the use of CA-11 yeast produces better quality cachaça. Revista Ciência Agronômica 51 (4): e20197021.

    Article  Google Scholar 

  • Montolalu, Roike I., Yuri Tashiro, Shingo Matsukawa, and Hiro Ogawa. 2008. Effects of extraction parameters on gel properties of carrageenan from Kappaphycus alvarezii (Rhodophyta). Journal of Applied Phycology 20: 521–526. https://doi.org/10.1007/s10811-007-9284-2.

    Article  CAS  Google Scholar 

  • Paul, Nicholas A., and C.K. Tseng. 2012. Aquaculture: Farming aquatic animals and plants—Chapter 13: Seaweed. Oxford: Blackwell Publishing.

    Google Scholar 

  • Ratkovich, Nicolas., Christian Esser, Ana M R. Machado, Benjamim A. Mendes, amd Maria G. Cardoso. 2023. The spirit of cachaça production: an umbrella review of processes, flavour, contaminants and quality improvement. Foods 12 (17): 3325. https://doi.org/10.3390/foods12173325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rein, Peter. 2012. Ingenieria de la cana de azucar. Berlin: Bartens.

    Google Scholar 

  • Silva, Da., Rebecca Barrense, Inácio. R. Leite, Mirella M. Luize, and Roger D. Barbosa. 2019. Comparação entre o desempenho do extrato de tanino de acácia negra e o da quitosana como auxiliar de clarificação de caldo de cana. Brazilian Journal of Development 5 (11): 24373–24380. https://doi.org/10.34117/bjdv5n11-124.

    Article  Google Scholar 

  • Teixeira, Vitor, Silvia C. M. Parra, Aline F. Silva, Gustavo H. G. Costa, Lidyane A. Freita, Cristhyane M. Freita, and Márcia. J. R. Mutton. 2021. Moringa seed extract with a potential similar flocculant activity to a synthetic polymer during sugarcane clarification. Biomass Conversion and Biorefinery 13: 5197–5203. https://doi.org/10.1007/s13399-021-01694-5.

    Article  CAS  Google Scholar 

  • Thielmann, Erika, Raquel M. Cavalcante, and André F. Young. 2022. Simulation and economic evaluation of different process alternatives for the fermentation and distillation steps of ethanol production. Energy Conversion and Management 265: 115792. https://doi.org/10.1016/j.enconman.2022.115792.

    Article  CAS  Google Scholar 

  • Toro, Sandra J. Henao., Faver Gómez-Narváez. Henao, José Contreras-Calderón, and Adriana P. Arisseto. 2022. Acrylamide in sugar products. Current Opinion in Food Science 45: 100841.

    Article  Google Scholar 

  • Vandenberghe, Luciana P., Kim K. K. D. Valladares, Gustavo A. Bittencourt, Luis A. Z. Torres, Sabrina Vieira, Susan G. Karp, Eduardo B. I. Sydney, Julio C. de Carvalho, V. T. C. Thomaz Soccol, and Carlos R. Soccol. 2022. Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil. Renewable and Sustainable Energy Reviews 167: 112721.

    Article  CAS  Google Scholar 

  • Yang, Xinchao, Ke. Wang, Huijun Wang, Jianhua Zhang, and Zhonggui Mao. 2016. Ethanol fermentation characteristics of recycled water by Saccharomyces cerevisiae in an integrated ethanol-methane fermentation process. Bioresource Technology  220: 609–614. https://doi.org/10.1016/j.biortech.2016.08.040.

    Article  CAS  PubMed  Google Scholar 

  • Zhuang, Xiaoling, Yuanpeng Wang, Qingbiao Li, Shan Yan, and Ning He. 2012. The production of bioflocculants by Bacillus licheniformis using molasses and its application in the sugarcane industry. Biotechnology and Bioprocess Engineering 17: 1041–1047. https://doi.org/10.1007/s12257-012-0213-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig) for the research grant granted (Process APQ-03146-21), as well as the University of the State of Minas Gerais (UEMG-Frutal) for helping with the project and the company Tanac® for providing the material to carry out the study.

Funding

This research was conducted using founds from University of Minas Gerais State.

Author information

Authors and Affiliations

Authors

Contributions

GUA did material preparation, data collection, analysis and first draft of the manuscript, reviewed and edited the manuscript. MBMdC done experimental design; GHGC and MBMdC performed data collection, analysis, first draft of the manuscript, reviewed and edited the manuscript. All authors read and approved this final manuscript.

Corresponding author

Correspondence to Giovanni Uema Alcantara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest, financial interests or any personal relationships that could influence in this present research.

Ethical Approval

The authors inform that this research followed principles of ethical and professional conduct. The manuscript was not submitted to another journal for simultaneous consideration. The data are original and they are not published elsewhere in any form or language (partially or in full). The results were presented clearly, honestly, and without fabrication, falsification or inappropriate data manipulation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcantara, G.U., de Castilhos, M.B.M. & Costa, G.H.G. The Effect on Ethanol Production Using Red Seaweed Extracts in Sugarcane Juice Treatment. Sugar Tech (2024). https://doi.org/10.1007/s12355-024-01389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12355-024-01389-x

Keywords

Navigation