Skip to main content
Log in

Dynamic Changes in Microbial Succession and Fermentation Profiles of Sugarcane Tops Silage Treated With Exogenous Enzymes and Lactic Acid Bacteria Following Various Duration of Ensiling

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The current study was undertaken to identify the most promising combination of the additives which reduce the ensiling duration and improve silage quality in terms of microbial succession and fermentation profiles of sugarcane tops silage. Fresh sugarcane tops were ensiled in 3-L laboratory silos in four treatment groups supplemented with enzymes (cellulase + xylanase), enzymes plus Lactobacillus plantarum (C + X + LP), enzymes plus Lactobacillus fermentum (C + X + LF) and enzymes + Lactobacillus plantarum + Lactobacillus fermentum (C + X + LP + LF) for 15, 25, 35, and 45 days. Urea (0.5%) and molasses (1.5%) were added to all treatment groups. The silages were tested for microbiological and chemical parameters after storage. Results indicated that, in the first 15 days of ensiling, higher LAB counts were observed and thereafter decreased. The highest LAB count was observed in C + X + LP + LF treatment. Among all the durations of ensiling, the yeast and moulds count was lower at day 25. NH3–N, acetic acid (AA), and butyric acid significantly increased with increasing the days of ensiling. All additives improved lactic acid concentration relative to the enzymes (C + X) treated silage. The concentration of lactic acid (LA) in all silages soared to grasp a peak at day 35 and then decreased at the end of the ensiling days. The LA: AA ratio in all silages peaked at day 25 and then decreased with increasing the duration of ensiling. Consequently, among all treatments, exogenous enzymes and LAB-treated silages (C + X + LF and C + X + LP + LF) were the best combination based on LAB count, lactic acid, yeast–mould counts, and LA:AA ratio at days 15 and 25 of ensiling. The combined effect of LAB and enzymes can reduce the ensiling period and improve silage quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AOAC. 2005. Official Methods of Analysis, 18th ed. Arlington: Association of Official Analytical Chemists.

    Google Scholar 

  • Ávila, C.D., C.E.C. Bravo Martins, and R.F. Schwan. 2010. Identification and characterization of yeasts in sugarcane silages. Journal of Applied Microbiology 109 (5): 1677–1686.

    PubMed  Google Scholar 

  • Avila, C.L., B.F. Carvalho, J.C. Pinto, W.F. Duarte, and R.F. Schwan. 2014. The use of Lactobacillus species as starter cultures for enhancing the quality of sugar cane silage. Journal of Dairy Science 97 (2): 940–951.

    Article  CAS  PubMed  Google Scholar 

  • Balsom, T. and Lynch, G. 2008. Monitoring pasture quality using brix measurements. Novel Ways, 17 December.

  • Barker, S.B., and W.H. Summerson. 1941. The colorimetric determination of lactic acid in biological material. Journal of Biological Chemistry 138 (2): 535–554.

    Article  CAS  Google Scholar 

  • Barnett, A.J.G. 1951. The colorimetric determination of lactic acid in silage. Biochemical Journal 49 (4): 527–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borreani, G., E. Tabacco, R.J. Schmidt, B.J. Holmes, and R.E. Muck. 2018. Silage review: Factors affecting dry matter and quality losses in silages. Journal of Dairy Science 101: 3952–3979.

    Article  CAS  PubMed  Google Scholar 

  • Bureenok, S., T. Namihira, M. Tamaki, S. Mizumachi, Y. Kawamoto, and T. Nakada. 2005. Fermentative quality of guineagrass silage by using fermented juice of the epiphytic lactic acid bacteria (FJLB) as a silage additive. Asian-Australasian Journal of Animal Sciences 18 (6): 807–811.

    Article  CAS  Google Scholar 

  • Carvalho, B.F., C.L.S. Ávila, M.G.C.P. Miguel, J.C. Pinto, M.C. Santos, and R.F. Schwan. 2015. Aerobic stability of sugar-cane silage inoculated with tropical strains of lactic acid bacteria. Grass and Forage Science 70 (2): 308–323.

    Article  CAS  Google Scholar 

  • Chandel, A.K., S.S. da Silva, W. Carvalho, and O.V. Singh. 2012. Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products. Journal of Chemical Technology & Biotechnology 87 (1): 11–20.

    Article  CAS  Google Scholar 

  • Chauhan, N., D. Singh, N. Kumari, and N. Tyagi. 2021. Impact of lactic acid bacteria and enzymes on the fermentation processes of sugarcane tops silage at a particular time interval. The Pharma Innovation Journal 10 (2): 332–336.

    Article  CAS  Google Scholar 

  • De Man, J.C., D. Rogosa, and M.E. Sharpe. 1960. A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology 23 (1): 130–135.

    Article  Google Scholar 

  • Dotaniya, M.L., S.C. Datta, D.R. Biswas, C.K. Dotaniya, B.L. Meena, S. Rajendiran, K.L. Regar, and M. Lata. 2016. Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. International Journal of Recycling of Organic Waste in Agriculture 5 (3): 185–194.

    Article  Google Scholar 

  • Driehuis, F., S. Oude Elferink, and P. Van Wikselaar. 2001. Fermentation characteristics and aerobic stability of grass silage inoculated with lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass and Forage Science 56 (4): 330–343.

    Article  CAS  Google Scholar 

  • Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11 (1): 1–42.

    Article  Google Scholar 

  • Ebrahimi, M., M. A. Rajion, Y.M. Goh, A. S. Farjam, A. Q. Sazili, and J. T. Schonewille. 2014. The effects of adding lactic acid bacteria and cellulase in oil palm (Elais guineensis Jacq.) frond silages on fermentation quality, chemical composition and in vitro digestibility. Italian Journal of Animal Science 13 (3): 33–58.

  • Elissen, H.J.H. and A. M. J. Kootstra. 2016. Production of short-chain volatile fatty acids and lactic acid during sma ll-scale ensiling of meadow grass: TKI ‘Kleinschalige Bioraffinage’, WP9: Fatty acid and PHA production based on residues. Wageningen UR, PPO/Acrres.

  • Gordon, F.J. 1989. A further study on the evaluation through lactating cattle of a bacterial inoculant as an additive for grass silage. Grass and Forage Science 44 (3): 353–357.

    Article  Google Scholar 

  • He, L., C. Wang, Y. Xing, W. Zhou, R. Pian, X. Chen, and Q. Zhang. 2019. Ensiling characteristics, proteolysis and bacterial community of high-moisture corn stalk and stylo silage prepared with Bauhinia variegate flower. Bioresource Technology 296: 122336.

    Article  PubMed  Google Scholar 

  • Horn, G.W., J. Zorrilla-Rios, and D.E. Akin. 1989. Influence of stage of forage maturity and ammoniation of wheat straw on ruminal degradation of wheat forage tissues. Animal Feed Science and Technology 24 (3–4): 201–218.

    Article  Google Scholar 

  • Jones, B.A., L.D. Satter, and R.E. Muck. 1992. Influence of bacterial inoculant and substrate addition to lucerne ensiled at different dry matter contents. Grass and Forage Science 47 (1): 19–27.

    Article  CAS  Google Scholar 

  • Kebede, G., A. Mengistu, G. Assefa, and G. Animut. 2018. Nutritional and fermentative quality of sugarcane (Saccharum officinarum) top ensiled with or without urea and molasses. African Journal of Agricultural Research 13 (20): 1010–1017.

    Article  CAS  Google Scholar 

  • Kılıç, A. 1984. Silage Feed, 350. I˙zmir: Bilgehan Press.

  • Kung, L., Jr. 2010. Understanding the biology of silage preservation to maximize quality and protect the environment. In Proceedings, California Alfalfa & Forage Symposium and Corn/cereal Silage Conference 1: 1–2.

  • Kung, L., and R. Shaver. 2001. Interpretation and use of silage fermentation analysis reports. Focus on Forage 3 (13): 1–5.

    Google Scholar 

  • Kung, L., Jr., R.D. Shaver, R.J. Grant, and R.J. Schmidt. 2018a. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science 101 (5): 4020–4033.

    Article  CAS  PubMed  Google Scholar 

  • Kung, L., Jr., M.L. Smith, E.B. da Silva, M.C. Windle, T.C. da Silva, and S.A. Polukis. 2018b. An evaluation of the effectiveness of a chemical additive based on sodium benzoate, potassium sorbate, and sodium nitrite on the fermentation and aerobic stability of corn silage. Journal of Dairy Science 101 (7): 5949–5960.

    Article  CAS  PubMed  Google Scholar 

  • Leibensperger, R.Y., and R.E. Pitt. 1987. A model of clostridial dominance in ensilage. Grass and Forage Science 42 (3): 297–317.

    Article  Google Scholar 

  • Lemus, R.W. and J. A.. White. 2014. Brix Level in Your Forage: What does it mean?. Mississippi State University Extension Service.

  • Li, J., X. Yuan, S.T. Desta, Z. Dong, W. Mugabe, and T. Shao. 2018. Characterization of Enterococcus faecalis JF85 and Enterococcus faecium Y83 isolated from Tibetan yak (Bos grunniens) for ensiling Pennisetum sinese. Bioresource Technology 257: 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., S. Du, L. Sun, Q. Cheng, J. Hao, Q. Lu, G. Ge, Z. Wang, and Y. Jia. 2022. Effects of Lactic acid bacteria and molasses additives on dynamic fermentation quality and microbial community of native grass silage. Frontiers in Microbiology 13.

  • Lindgren, S.E., L.T. Axelsson, and R.F. McFeeters. 1990. Anaerobic L-lactate degradation by Lactobacillus plantarum. FEMS Microbiology Letters 66 (1–3): 209–213.

    CAS  Google Scholar 

  • McAllister, T.A., L.B. Selinger, L.R. McMahon, H.D. Bae, T.J. Lysyk, S.J. Oosting, and K.J. Cheng. 1995. Intake, digestibility and aerobic stability of barley silage inoculated with mixtures of Lactobacillus plantarum and Enterococcus faecium. Canadian Journal of Animal Science 75 (3): 425–432.

    Article  Google Scholar 

  • McDonald, P., Henderson, A.R. and Heron, S.J.E. 1991. The biochemistry of silage. Chalcombe publications.

  • Mohd-Setapar, S.H., N. Abd-Talib, and R. Aziz. 2012. Review on crucial parameters of silage quality. APCBEE Procedia 3: 99–103.

    Article  CAS  Google Scholar 

  • Muck, R.E. 1993. The role of silage additives in making high quality silage. In Proceedings of the National Silage Production Conference on Silage Production from Seed to Animal Syracuse, NY, USA 1: 106–116.

  • Muck, R.E. 2010. Silage microbiology and its control through additives. Revista Brasileira De Zootecnia 39: 183–191.

    Article  Google Scholar 

  • Ni, K., F. Wang, B. Zhu, J. Yang, G. Zhou, Y. Pan, Y. Tao, and J. Zhong. 2017. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresource Technology 238: 706–715. https://doi.org/10.1016/j.biortech.2017.04.055.

    Article  CAS  PubMed  Google Scholar 

  • Nishino, N., Y. Li, C. Wang, and S. Parvin. 2012. Effects of wilting and molasses addition on fermentation and bacterial community in guinea grass silage. Letters in Applied Microbiology 54 (3): 175–181. https://doi.org/10.1111/j.1472-765X.2011.03191.x.

    Article  CAS  PubMed  Google Scholar 

  • Ogunade, I.M., D.H. Kim, Y. Jiang, Z.G. Weinberg, K.C. Jeong, and A.T. Adesogan. 2016. Control of Escherichia coli O157: H7 in contaminated alfalfa silage: Effects of silage additives. Journal of Dairy Science 99 (6): 4427–4436.

    Article  CAS  PubMed  Google Scholar 

  • Ogunade, I.M., Y. Jiang, A.A. Pech Cervantes, D.H. Kim, A.S. Oliveira, D. Vyas, Z.G. Weinberg, K.C. Jeong, and A.T. Adesogan. 2018. Bacterial diversity and composition of alfalfa silage as analyzed by Illumina MiSeq sequencing: Effects of Escherichia coli O157:H7 and silage additives. Journal of Dairy Science 101 (3): 2048–2059.

    Article  CAS  PubMed  Google Scholar 

  • Östling, C., and S. Lindgren. 1995. Influences of enterobacteria on the fermentation and aerobic stability of grass silages. Grass and Forage Science 50 (1): 41–47.

    Article  Google Scholar 

  • Oude Elferink, S.J., J. Krooneman, J.C. Gottschal, S.F. Spoelstra, F. Faber, and F. Driehuis. 2001. Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by Lactobacillus buchneri. Applied and Environmental Microbiology 67 (1): 125–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich, L.J., and L. Kung Jr. 2010. Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage. Animal Feed Science and Technology 159 (3–4): 105–109.

    Article  CAS  Google Scholar 

  • Ren, F., R. He, X. Zhou, Q. Gu, Z. Xia, M. Liang, J. Zhou, B. Lin, and C. Zou. 2019. Dynamic changes in fermentation profiles and bacterial community composition during sugarcane top silage fermentation: A preliminary study. Bioresource Technology 285: 21315.

    Article  Google Scholar 

  • Rezaei, J., Y. Rouzbehan, and H. Fazaeli. 2009. Nutritive value of fresh and ensiled amaranth (Amaranthus hypochondriacus) treated with different levels of molasses. Animal Feed Science and Technology 151 (1–2): 153–160.

    Article  CAS  Google Scholar 

  • Rooke, J.A. and Hatfield, R.D. 2003. Biochemistry of ensiling. Silage Science and Technology 42: 95–139.

    CAS  Google Scholar 

  • Salinas-Chavira, J., L.J. Almaguer, C.E. Aguilera-Aceves, R.A. Zinn, M. Mellado, and O. Ruiz-Barrera. 2013. Effect of substitution of sorghum stover with sugarcane top silage on ruminal dry matter degradability of diets and growth performance of feedlot hair lambs. Small Ruminant Research 112 (1–3): 73–77.

    Article  Google Scholar 

  • Shockey, W.L., B.A. Dehority, and H.R. Conrad. 1988. Effects of microbial inoculant on fermentation of poor quality alfalfa. Journal of Dairy Science 71 (3): 722–726.

    Article  Google Scholar 

  • Silalertruksa, T., and S.H. Gheewala. 2020. Competitive use of sugarcane for food, fuel, and biochemical through the environmental and economic factors. The International Journal of Life Cycle Assessment 25 (7): 1343–1355.

    Article  CAS  Google Scholar 

  • Singh, D., T. A. Johnson, N. Tyagi, R. Malhotra, P. V. Behare, S. Kumar, and A. K. Tyagi. 2022. Synergistic Effect of LAB Strains (Lb. fermentum and Pediococcus acidilactisci) with Exogenous Fibrolytic Enzymes on Quality and Fermentation Characteristics of Sugarcane Tops Silage. Sugar Tech 1–13.

  • Sun, Z.H., S.M. Liu, G.O. Tayo, S.X. Tang, Z.L. Tan, B. Lin, Z.X. He, X.F. Hang, Z.S. Zhou, and M. Wang. 2009. Effects of cellulase or lactic acid bacteria on silage fermentation and in vitro gas production of several morphological fractions of maize stover. Animal Feed Science and Technology 152 (3–4): 219–231.

    Article  CAS  Google Scholar 

  • Van Soest, P.V., J.B. Robertson, and B. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74 (10): 3583–3597.

    Article  PubMed  Google Scholar 

  • Wang, S.Q., N.F. Zhang, K.D. Deng, C.G. Jiang, and Q.Y. Diao. 2018. Feeding value assessment of sugarcane tops and leaves in mutton sheep. Chinese Journal of Animal Nutrition 30: 1146–1154. https://doi.org/10.3969/j.issn.1006-267x.2018.03.040.

    Article  CAS  Google Scholar 

  • Weinberg, Z.G., G. Ashbell, Y. Hen, and A. Azrieli. 1995. The effect of cellulase and hemicellulase plus pectinase on the aerobic stability and fibre analysis of peas and wheat silages. Animal Feed Science and Technology 55 (3–4): 287–293.

    Article  CAS  Google Scholar 

  • Weissbach, F., and H. Honig. 1996. About the prediction and control of course of fermentation in the ensilage of green fodder from extensive cultivation. Landbauforschung Volkenrode 1 (1): 10–17.

    Google Scholar 

  • Wrobel, B., A. Zielinska and A. Suterska. 2008. Evaluation of quality and aerobic stability of grass silage treated with bacterial inoculants containing lactobacillus buchneri. In: Proceedings, 13th International Conference on Forage Conservation, Nitra, Slovak Republic 122–123.

  • Yang, L., X. Yuan, J. Li, Z. Dong, and T. Shao. 2019. Dynamics of microbial community and fermentation quality during ensiling of sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant. Bioresource Technology 275: 280–287. https://doi.org/10.1016/j.biortech.2018.12.067.

    Article  CAS  PubMed  Google Scholar 

  • Yemm, E.W., and A. Willis. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal 57 (3): 508–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., Z. Yu, and R.S. Na. 2018. Effects of different additives on fermentation quality and aerobic stability of Leymus chinensis silage. Grass and Forage Science 73 (2): 413–419.

    Article  CAS  Google Scholar 

  • Zhang, L., X. Zhou, Q. Gu, M. Liang, S. Mu, B. Zhou, F. Huang, B. Lin, and C. Zou. 2019. Analysis of the correlation between bacteria and fungi in sugarcane tops silage prior to and after aerobic exposure. Bioresource Technology 291: 121835.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, J., Z. Dong, J. Li, L. Chen, Y. Bai, Y. Jia, and T. Shao. 2018. Ensiling as pretreatment of rice straw: The effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresource Technology 266: 158–165.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, J., Z. Dong, J. Li, L. Chen, Y. Bai, Y. Jia, and T. Shao. 2019. Effects of lactic acid bacteria and molasses on fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro ruminal fermentation of rice straw silage. Asian-Australasian Journal of Animal Sciences 32 (6): 783.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, National Dairy Research Institute, Karnal, India for all the necessary facilities during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Tyagi.

Ethics declarations

Conflict of interest

None of the major conflicts of interest has been reported by the authors, and all authors agreed on the final statement.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, N., Kumari, N., Mishra, D.B. et al. Dynamic Changes in Microbial Succession and Fermentation Profiles of Sugarcane Tops Silage Treated With Exogenous Enzymes and Lactic Acid Bacteria Following Various Duration of Ensiling. Sugar Tech 25, 592–602 (2023). https://doi.org/10.1007/s12355-022-01205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-022-01205-4

Keywords

Navigation