Skip to main content

Advertisement

Log in

Genetic Transformation in Sugar Beet (Beta vulgaris L.): Technologies and Applications

  • Review Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sugar beet (Beta vulgaris L.) is a potential cash crop of immense commercial importance. The crop finds many industrial utilizations owing to its rich carbohydrate storage reserves. Conventional strategies bank on traditional cultivation package of practices and hence expose the otherwise recalcitrant sugar beet crop to various stresses like diseases, pests, and abiotic stress factors. Hence, potential alternative transpiring to the rescue is the development of genetically transformed crop plants (supplemented by an efficient in vitro regeneration protocol) harbouring beneficial genes to counter the above-mentioned problems. Sugar beet could be genetically modified through the indirect methods using Agrobacterium spp. along with the direct transformation methods, viz. particle bombardment, polyethylene-glycol mediated, somatic hybridization, sonication, and electroporation. Such biotechnological explorations aim towards the development of improved herbicide -resistant, salinity-tolerant, frost and moisture stress-resistant, rhizomania-, Cercospora leaf spot- and nematode-resistant lines along with concerted efforts to augment the intrinsic secondary metabolites. Industrially important carbohydrates like fructans and sucrose have also been improvised via transgenic interventions. With the multi-dimensional prospects of genetic engineering in sugar beet being explored since the early 1990s, the different investigative attempts along with the associated underlying reasons and parameters to the derived results have been discusse in the current review that effectively summarizes the different transformation techniques employed along with the potential applications of the transformed plants for crop improvement in sugar beet with major focus on biotic and abiotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  • Ali, M.A., F. Azeem, A. Abbas, F.A. Joyia, H. Li, and A.A. Dababat. 2017. Transgenic strategies for enhancement of nematode resistance in plants. Frontiers in Plant Science 8: 750.

    Article  Google Scholar 

  • Al-Nema, Q.S., and M.K Al-Mallah. 2018. Obtaining heterokaryons following electrical fusion between mesophyll and transformed hairy roots protoplasts of sugarbeet. Mesopotamia Environmental Journal (Special Issue) E: 107–114.

  • Asher, M.J.C., and L.E. Hanson. 2006. Fungal and bacterial diseases. In Sugar beet, ed. A.P. Draycott, 286–315. Oxford: Blackwell.

    Chapter  Google Scholar 

  • Atiq, G., Nasrullah, S. Kanwal, M.A. Raheem, and R.K. Iqbal. 2019. Plant transformation in biotechnology. Middle East Journal of Applied Sciences Technology 2: 103–123.

    Google Scholar 

  • Badr-Elden, A.M., A.A. Nower, M.L. Nasr, and A.I. Ibrahim. 2010. Isolation and fusion of protoplasts in sugar beet (Beta vulgaris L.). Sugar Tech 12: 53–58.

    Article  CAS  Google Scholar 

  • Basso, M.F., F.B.M. Arraes, M. Grossi-de-Sa, V.J.V. Moreira, M. Alves-Ferreira, and M.F. Grossi-de-Sa. 2020. Insights into genetic and molecular elements for transgenic crop development. Frontiers in Plant Science 11: 509.

    Article  Google Scholar 

  • Bhagyalakshmi, N., R. Thimmaraju, and M.S. Narayan. 2004. Various hexoses and di-hexoses differently influence growth, morphology and pigment synthesis in transformed root cultures of red beet (Beta vulgaris). Plant Cell, Tissue and Organ Culture 78: 183–195.

    Article  CAS  Google Scholar 

  • Biancardi, E., L.G. Campbell, G.N. Skaracis, and M. DeBiaggi. 2005. Genetics and breeding of sugar beet. Enfield: Science Publishers.

    Book  Google Scholar 

  • Böhm, H., and G. Mäck. 2004. Betaxanthin formation and free amino acids in hairy roots of Beta vulgaris var. lutea depending on nutrient medium and /glutamate or glutamine feeding. Phytochemistry 65: 1361–1368.

    Article  Google Scholar 

  • Cai, D.T., Y. Thurau, T. Tian, K.W. Yeh. Lange, and C. Jung. 2003. Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Plant Molecular Biology 51: 839–849.

    Article  CAS  Google Scholar 

  • Darmency, H., Y. Vigouroux, and T. G. De Garamb´e, M. Richard-Molard, and C. Muchembled. 2007. Transgene escape in sugar beet production fields: Data from six years farm scale monitoring. Environmental Biosafety Research 6: 197–206.

    Article  Google Scholar 

  • Desoignies, N., and A. Legreve. 2011. In vitro dual culture of Polymyxa betae in Agrobacterium rhizogenes transformed sugar beet hairy roots in liquid media. The Journal of Eukaryotic Microbiology 58: 424–425.

    Article  Google Scholar 

  • Finkenstadt, V.L. 2013. A review on the complete utilization of the sugarbeet. Sugar Tech 16: 339–346.

    Article  Google Scholar 

  • Gantait, S., and S. Mondal. 2018. Transgenic approaches for genetic improvement in groundnut (Arachis hypogaea L.) against major biotic and abiotic stress factors. Journal of Genetic Engineering and Biotechnology 6: 537–544.

    Article  Google Scholar 

  • Gantait, S., and E. Mukherjee. 2021. Hairy root culture technology: Applications, constraints and prospect. Applied Microbiology and Biotechnology 105: 35–53.

    Article  CAS  Google Scholar 

  • Ghahdarijani, N.S., A. Niazi, E. Ebrahimie, A. Moghadam, and M.S. Taghizadeh. 2018. Assessment of the efficiency of hairy roots induction using soybean, sugar beet and tobacco explants. Journal of Plant Molecular Breeding 6: 61–72.

    Google Scholar 

  • Goudarzi, A., N. Safaei, M. Jafari, S. Mahmoudi, and M. Tohid Far. 2015. Transformation of sugar beet with a bean chitinase gene and enhanced resistance to Alternaria alternata. Agricultural Biotechnology Journal. 7: 175–200.

    Google Scholar 

  • Gurel, S., E. Gurel, and Z. Kaya. 2002. Protoplast fusion in sugar beet (Beta vulgaris L.). Turkish Journal of Biology 26: 163–170.

    Google Scholar 

  • Gurel, E., S. Gurel, and P.G. Lemaux. 2008. Biotechnology applications for sugar beet. Critical Reviews in Plant Sciences 27: 108–140.

    Article  CAS  Google Scholar 

  • Gurel, S. 2021. Sand-wounding of shoot and petiole explants enhances transformation efficiency in sugar beet (Beta vulgaris L.) by Agrobacterium-mediated transformation. Sugar Tech 23: 415–427.

    Article  CAS  Google Scholar 

  • Hébrard, C., D.G. Peterson, G. Willems, A. Delaunay, B. Jesson, M. Lefèbvre, S. Barnes, and S. Maury. 2016. Epigenetics and bolting tolerance in sugar beet genotypes. Journal of Experimental Botany 67: 207–225.

    Article  Google Scholar 

  • Hejri, S., A. Salimi, M.A. Malboobi, and F. Fatehi. 2021. Comparative proteome analyses of rhizomania resistant transgenic sugar beets based on RNA silencing mechanism. GM Crops and Food 12: 419–433.

    Article  Google Scholar 

  • Hisano, H., Y. Kimoto, H. Hayakawa, J. Takeichi, T. Domae, R. Hashimoto, J. Abe, S. Asano, A. Kanazawa, and Y. Shimamoto. 2004. High frequency Agrobacterium-mediated transformation and plant regeneration via direct shoot formation from leaf explants in Beta vulgaris and Beta maritima. Plant Cell Reports 22: 910–918.

    Article  CAS  Google Scholar 

  • Holmquist, L., F. Dölfors, J. Fogelqvist, J. Cohn, T. Kraft, and C. Dixelius. 2021. Major latex protein-like encoding genes contribute to Rhizoctonia solani defense responses in sugar beet. Molecular Genetics and Genomics 296: 155–164.

    Article  CAS  Google Scholar 

  • Ismail, R.M., A.B. Youssef, S.E.D. El-Assal, M.S. Tawfik, and N.A. Abdallah. 2020. Cloning and characterization of heat shock factor (bvhsf) from sugar beet (Beta vulgaris). Plant Archives 20: 3725–3733.

    Google Scholar 

  • Ivic, S.D., R.C. Sicher, and A.C. Smigocki. 2001. Growth habit and sugar accumulation in sugarbeet (Beta vulgaris L.) transformed with a cytokinin biosynthesis gene. Plant Cell Reports 20: 770–773.

    Article  CAS  Google Scholar 

  • Ivic, S.D., and A.C. Smigocki. 2001. Evaluation of the biolistic transformation method for commercially important sugarbeet breeding lines. In Proceedings 31st Meeting of the American Society of Sugar Beet Technologists, Vancouver.

  • Ivic-Haymes, S.D., and A.C. Smigocki. 2005. Identification of highly regenerative plants within sugar beet (Beta vulgaris L.) breeding lines for molecular breeding. In Vitro Cellular and Development Biology-Plant 41: 483–488.

    Article  Google Scholar 

  • Jafari, M., P. Norouzi, M.A. Malboobi, B. Ghareyazie, M. Valizadeh, S.A. Mohammadi, and M. Mousavi. 2009. Enhanced resistance to a lepidopteran pest in transgenic sugar beet plants expressing synthetic cry1Ab gene. Euphytica 165: 333–344.

    Article  CAS  Google Scholar 

  • Joersbo, M. 2007. Sugar beet. In Transgenic crops, ed. E.C. Pua and M.R. Davey, 355–379. Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Kagami, H., M. Kurata, H. Matsuhira, K. Taguchi, T. Mikami, H. Tamagake, and T. Kubo. 2015. Sugar Beet (Beta vulgaris L.). In Agrobacterium protocols. methods in molecular biology, ed. K. Wang. New York NY: Springer.

    Google Scholar 

  • Kalantari, M., M. Motallebi, and M.R. Zamani. 2011. Bean polygalacturonase-Inhibiting protein expressed in transgenic sugar beet Inhibits polygalacturonase from Rhizoctonia Solani. Biosciences Biotechnology Research Asia 8: 19–28.

    Article  CAS  Google Scholar 

  • Khanna, H.K., J.Y. Paul, R.M. Harding, M.B. Dickman, and J.L. Dale. 2007. Inhibition of Agrobacterium-induced cell death by anitapoptotic gene expression leads to very high transformation efficiency of banana. Molecular Plant Microbe Interactions 20: 1048–1054.

    Article  CAS  Google Scholar 

  • Klimek-Chodacka, M., and R. Baranski. 2014. A protocol for sonication-assisted Agrobacterium rhizogenes mediated transformation of haploid and diploid sugar beet (Beta vulgaris L.) explants. Acta Biochimica Polonica 61: 13–17.

    Article  Google Scholar 

  • Kishchenko, E.M., I.K. Komarnitskii, and N.V. Kuchuk. 2011. Transgenic sugar beet tolerant to imidazolinone obtained by Agrobacterium-mediated transformation. Cytology and Genetics 45: 148–152.

    Article  Google Scholar 

  • Kuykendall, L.D., T.M. Stockett, and J.W. Saunders. 2003. Rhizobium radiobacter conjugation and callus-independent shoot regeneration used to introduce the cercosporin export gene cfp from Cercospora into sugar beet (Beta vulgaris L.). Biotechnology Letters 25: 739–744.

    Article  CAS  Google Scholar 

  • Laere, E., A.P.K. Ling, Y.P. Wong, R.Y. Koh, M.A.M. Lila, and S. Hussein. 2016. Plant-based vaccines: Production and challenges. Journal of Botany 2016: 1–11.

    Article  Google Scholar 

  • Lauber, E., L. Jansens, G. Weyens, G. Jonard, K. Richards, M. Lefebvre, and H. Guilley. 2001. Rapid screening for dominant negative mutations in the beet necrotic yellow vein virus triple gene block proteins P13 and P15using a viral replicon. Transgenic Research 10: 293–302.

    Article  CAS  Google Scholar 

  • Lathouwers, J., G. Weyens, and M. Lefebvre. 2005. Transgenic research in sugar beet. In Genetic modification in sugar beet, ed. J. Pidgeon, M.R. Molard, J.D.A. Wevers, and R. Beckers, 5–24. International Institute of Beet Research: Brussels, Belgium.

    Google Scholar 

  • Lennefors, B.L., P.M. van Roggen, F. Yndgaard, E.I. Savenkov, and J.P.T. Valkonen. 2008. Efficient dsRNA-mediated transgenic resistance to beet necrotic yellow vein virus in sugar beets is not affected by other soilborne and Aphid-transmitted viruses. Transgenic Research 17: 219–228.

    Article  CAS  Google Scholar 

  • Li, H., and A.C. Smigocki. 2019. Suppression of Fusarium oxysporum with recombinant polygalacturonase inhibiting proteins (BvPGIPs) extracted from sugar beet roots. Plant Cell, Tissue and Organ Culture 136: 197–203.

    Article  CAS  Google Scholar 

  • Lytvyn, D.I., V.V. Syvura, V.V. Kurylo, V.D. Oleneiva, A.I. Yemets, and Y.B. Blume. 2014. Creation of transgenic sugar beet lines expressing insect pest resistance genes cry1C and cry2A. Cytology and Genetics 48: 69–75.

    Article  Google Scholar 

  • Marchis, F.D., Y. Wang, P. Stevanato, S. Arcioni, and M. Bellucci. 2009. Genetic transformation of the sugar beet plastome. Transgenic Research 18: 17–30.

    Article  CAS  Google Scholar 

  • Meier, P., and W. Wackernagel. 2003. Monitoring the spread of recombinant DNA from field plots with transgenic sugar beet plants by PCR and natural transformation of Pseudomonas stutzeri. Transgenic Research 12: 293–304.

    Article  CAS  Google Scholar 

  • Menzel, G., H.J. Harloff, and C. Jung. 2003. Expression of bacterial poly(3-hydroxybutyrate) synthesis genes in hairy roots of sugar beet (Beta vulgaris L.). Applied Microbiology and Biotechnology 60: 571–576.

    Article  CAS  Google Scholar 

  • Ming, R., R. VanBuren, C.M. Wai, H. Tang, M.C. Schatz, J.E. Bowers, E. Lyons, M.L. Wang, J. Chen, E. Biggers, and J. Zhang. 2015. The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics 47: 1435–1442.

    Article  CAS  Google Scholar 

  • Mishutkina, Ya. V., and A.K. Gaponenko. 2006. Sugar beet (Beta vulgaris L.) morphogenesis in vitro: Effects of phytohormone type and concentration in the culture medium, type of explants, and plant genotype on shoot regeneration frequency. Russian Journal of Genetics 42: 150–157.

    Article  CAS  Google Scholar 

  • Moazami, K., S.E. Mortazavi, B. Heidari, and P. Nouroozi. 2018. Agrobacterium-mediated transient assay of the gus gene expression in sugar beet. Annual Research and Review in Biology 30: 1–7.

    Article  Google Scholar 

  • Moazami-Goodarzi, K., S.E. Mortazavi, B. Heidrai, and P. Norouzi. 2020. Optimization of Agrobacterium-mediated transformation of sugar beet: Glyphosate and insect pests resistance associated genes. Agronomy Journal 112: 4558–4567.

    Article  CAS  Google Scholar 

  • Mohammadzadeh, R., M. Motallebi, M. Zamani, J.Z. Moghaddassi, P. Norouzi, M. Benedetti, and G.D. Lorenzo. 2015. Generation of transgenic sugar beet (Beta vulgarism L.) overexpressing the polygalacturonase inhibiting protein 1 of Phaseolus vulgaris (PvPGIP1) through Agrobacterium-mediated transformation. Turkish Journal of Agriculture and Forestry 39: 429–438.

    Article  CAS  Google Scholar 

  • Mohammadzadeh, R., M. Zamami, M. Motallebi, P. Norouzi, E. Jourabchi, M. Benedetti, and G.D. Lorenzo. 2012. Agrobacterium tumefaciens-mediated introduction of polygalacturonase inhibiting protein 2 gene (PvPGIP2) from Phaseolus vulgaris into sugar beet (Beta vulgaris L.). Australian Journal of Crop Sciences 6: 1290–1297.

    CAS  Google Scholar 

  • Ninković, S., T. Djordjević, B. Vinterhalter, B. Uzelac, A. Cingel, J. Savić, and S. Radović. 2010. Embryogenic responses of Beta vulgaris L. callus induced from transgenic hairy roots. Plant Cell, Tissue and Organ Culture 103: 81–91.

    Article  Google Scholar 

  • Norouzi, P., M.A. Malboobi, K. Zamani, and B. Yazdi-Samadi. 2005. Using a competent tissue for efficient transformation of sugarbeet (Beta vulgaris L.). In Vitro Cell Development Biology-Plant 41: 11–16.

    Article  Google Scholar 

  • Ober, E.S., M.L. Bloa, C.J.A. Clark, A. Royal, K.W. Jaggard, and J.D. Pidgeon. 2005. Evaluation of physiological traits as indirect selection criteria for drought tolerance in sugar beet. Fields Crops Research 91: 231–249.

    Article  Google Scholar 

  • Oltmanns, H., D.U. Kloos, W. Brieβ, M. Pflugmacher, D.J. Stahl, and R. Hehl. 2006. Taproot promoters cause tissue specific gene expression within the storage root of sugar beet. Planta 224: 485–495.

    Article  CAS  Google Scholar 

  • Onde, S., M. Birsin, M. Yildiz, C. Sancak, and M. Ozgen. 2000. Transfer of a beta-glucuronidase reporter gene to sugarbeet (Beta vulgaris L.) via microprojectile bombardment. Turkish Journal of Agriculture and Forestry 24: 487–490.

    CAS  Google Scholar 

  • Ozyigit, I.I. 2020. Gene transfer to plants by electroporation: Methods and applications. Molecular Biology Reports 47: 3195–3210.

    Article  CAS  Google Scholar 

  • Panella, L., and R.T. Lewllen. 2007. Broadening the genetic base of sugar beet: Introgression from wild relatives. Euphytica 154: 383–400.

    Article  CAS  Google Scholar 

  • Pavli, O.I., N.J. Panopoulos, R. Goldbach, and G.N. Skaracis. 2010. BNYVV-derived dsRNA confers resistance to rhizomania disease of sugar beet as evidenced by a novel transgenic hairy root approach. Transgenic Research 19: 915–922.

    Article  CAS  Google Scholar 

  • Pilon-Smits, E.A.H., N. Terry, T. Sears, and K. van Dun. 1999. Enhanced drought resistance in fructan-producing sugar beet. Plant Physiology and Biochemistry 37: 313–317.

    Article  CAS  Google Scholar 

  • Porcel, R., A. Bustamante, R. Ros, R. Serrano, and J.M.M. Salort. 2018. BvCOLD1: A novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. Plant, Cell and Environment 41: 2844–2857.

    Article  CAS  Google Scholar 

  • Privalle, L.S. 2002. Phosphomannose isomerase, a novel plant selection system. Annals of the New York Academy of Sciences 964: 129–138.

    Article  CAS  Google Scholar 

  • Ramachandran, V., J.J. Weiland, and M.D. Bolton. 2021. CRISPR-based isothermal next-generation diagnostic method for virus detection in sugarbeet. Frontiers in Microbiology 12: 679994.

    Article  Google Scholar 

  • Rajabi, A., H. Griffiths, E.S. Ober, W. Kromdijk, and J.D. Pidgeon. 2008. Genetic characteristics of water-use related traits in sugar beet. Euphytica 160: 175–187.

    Article  Google Scholar 

  • Richardson, K.L. 2022. Registration of sugar beet mapping populations CN239, CN240, and CN241 segregating for resistance to Heterodera schachtii from sea beet. Journal of Plant Registrations 16: 459–464.

    Article  Google Scholar 

  • Sevenier, R., R.D. Hall, I. van der Meer, H.J. Hakkert, A.J. van Tunen, and A.J. Koops. 1998. High level fructan accumulation in a transgenic sugar beet. Nature Biotechnology 16: 843–846.

    Article  CAS  Google Scholar 

  • Shin, K.S., H.N. Murthy, J.W. Heo, and K.Y. Paek. 2003. Induction of betalain pigmentation in hairy roots of red beet under different radiation sources. Biologia Plantarum 47: 149–152.

    Article  CAS  Google Scholar 

  • Skaracis, G.N., and M. McGrath. 2005. Molecular biology and biotechnology. In Genetics and breeding of sugar beet, ed. E. Biancardi, L. Campbell, M. De Biaggi, and G.N. Skaracis, 221–286. Enfield, NH: Science Publishers Inc.

    Google Scholar 

  • Smigocki, A., L. Campbell, R. Larson, and C. Wozniak. 2008. Sugar Beet. In Compendium of transgenic crop plants: transgenic sugar, tuber and fiber crops, ed. C. Kole and T.C. Hall, 59–96. Oxford, UK: Blackwell Publishing.

    Chapter  Google Scholar 

  • Smigocki, A.C., L.G. Campbell, and C.A. Wozniak. 2003. Leaf extracts from cytokinin-overproducing transgenic plants kill sugarbeet root maggot larvae. Journal of Sugar Beet Research 40: 197–207.

    Article  Google Scholar 

  • Smigocki, A.C., D.P. Puthoff, and S. Zuzga. 2009. Low efficiency processing of an insecticidal Nicotiana proteinase inhibitor precursor in Beta vulgaris hairy roots. Plant Cell, Tissue and Organ Culture 97: 167–174.

    Article  CAS  Google Scholar 

  • Smigocki, A.C., S.D. Ivic-Haymes, L.G. Campbell, and M.A. Boetel. 2006. A sugarbeet root maggot (Tetanops myopaeformis Röder) bioassay using Beta vulgaris L. seedlings and in vitro propagated transformed hairy roots. Journal of Sugar Beet Research 43: 1–14.

    Article  Google Scholar 

  • Stahl, D.J., D.U. Kloos, and R. Hehl. 2004. A sugar beet chlorophyll a/b binding protein promoter void of G-box like elements confers strong and leaf specific reporter gene expression in transgenic sugar beet. BMC Biotechnology 4: 31–42.

    Article  Google Scholar 

  • Stevens, M., H.Y. Liu, and O. Lemaire. 2006. Virus diseases. In Sugar beet, ed. A.P. Draycott, 256–285. Oxford, UK: Blackwell.

    Chapter  Google Scholar 

  • Šutković, J., N. Hamad, and P. Glamočlija. 2021. The methods behind transgenic plant production: A review. Periodicals of Engineering and Natural Sciences 9: 845–853.

    Article  Google Scholar 

  • Téllez, S.R., R. Kanhonou, C.C. Bellés, R. Serrano, P. Alepuz, and R. Ros. 2020. RNA-Binding proteins as targets to improve salt stress tolerance in crops. Agronomy 10: 250.

    Article  Google Scholar 

  • Tertivanidis, K., C. Goudoula, C. Vasilikiotis, E. Hassiotou, R. Perl-Treves, R.P. Treves, and A. Tsafaris. 2004. Superoxide dismutase transgenes in sugar beets confer resistance to oxidative agents and the fungus C. beticola. Transgenic Research 13: 225–233.

    Article  CAS  Google Scholar 

  • Tränkner, C., I.M. Lemnian, N. Emrani, N. Pfeiffer, S.P. Tiwari, F.J. Kopisch-Obuch, S.H. Vogt, A.E. Müller, M. Schilhabel, C. Jung, and I. Grosse. 2016. A detailed analysis of the BR1 locus suggests a new mechanism for bolting after winter in sugar beet (Beta vulgaris L.). Frontiers in Plant Science 7: 1662.

    Article  Google Scholar 

  • Weyens, G., T. Ritsema, K. Van Dun, D. Meyer, M. Lommel, J. Lathouwers, I. Rosquin, P. Denys, A. Tossens, M. Nijs, S. Turk, N. Gerrits, S. Bink, B. Walraven, and M. Lef`ebvre, and S. Smeekens. 2004. Production of tailor-made fructans in sugar beet by expression of onion fructosyl transferase genes. Plant Biotechnology Journal 2: 321–327.

    Article  CAS  Google Scholar 

  • Wu, G.Q., R.J. Feng, S.M. Wang, and C.M., Wang, A.K. Bao., L. Wei, and H.J. Yuan. 2015. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1–1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.). Frontiers in Plant Science 6: 581.

    Article  Google Scholar 

  • Yang, A.F., X.G. Duan, X.F. Gu, and F, Gao, and J.R. Zhang. 2005. Efficient transformation of beet (Beta vulgaris) and production of plants with improved salt-tolerance. Plant Cell, Tissue and Organ Culture 83: 259–270.

    Article  CAS  Google Scholar 

  • Youssef, A.B.A., and W.M. Rslan. 2018. Sugar beet improvement using Agrobacterium-mediated transformation technology. Highlights in BioScience 1: 1–5.

    Article  Google Scholar 

  • Yuancong, Z. 1997. Cold-tolerant transgenic sugar beet. Asia Pacific Biotechnology News 14: 340.

    Google Scholar 

  • Zare, B., A. Niazi, R. Sattari, H. Aghelpasand, K. Zamani, M.S. Sabet, F. Moshiri, S. Darabie, M.H. Daneshvar, P. Norouzi, S.K. Kazemi-Tabar, M. Khoshnami, and M.A. Malboobi. 2015. Resistance against rhizomania disease via RNA silencing in sugar beet. Plant Pathology 64: 35–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the e-library assistance from the Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India. We are further thankful to the anonymous reviewer(s) and the editor of this article for their critical comments and suggestions on the manuscript.

Funding

None

Author information

Authors and Affiliations

Authors

Contributions

SG conceived the idea of the review. SG and EM surveyed the literature and drafted the initial manuscript. SG scrutinized and corrected the manuscript to its final version. Both the authors read and approved the final version of the manuscript prior to its submission.

Corresponding author

Correspondence to Saikat Gantait.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, E., Gantait, S. Genetic Transformation in Sugar Beet (Beta vulgaris L.): Technologies and Applications. Sugar Tech 25, 269–281 (2023). https://doi.org/10.1007/s12355-022-01176-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-022-01176-6

Keywords

Navigation