Skip to main content
Log in

Proteome Based Comparative Investigation of a High Sucrose Sugarcane Mutant in Contrast to the Low Sucrose Mother Variety by Using TMT Quantitative Proteomics

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sugarcane (Saccharum sp. hybrid) is a significant crop in the world’s economy and fulfills 80% of the world's sugar production. To meet the rising sugar requirement, it is emphasized to enhance the cane sugar yield. In the present study, the TMT quantitative proteomic approach was applied to find the proteins associated with sucrose accumulation in a high sucrose sugarcane mutant GXB9 compared to its low sucrose mother variety B9. A total of 27,922 proteins were obtained, and 7484 proteins received functional annotations on blasting in COG, GO, NR, Pfam, and KEGG databases. A sum of 3,102 differentially expressed proteins (DEPs) was recognized when the immature and maturing internodes of GXB9 were compared with B9. Sucrose phosphate synthase (SPS), invertases (CWIN, NIN1, CINV2), and sucrose synthase (SuSy) are significant proteins involved in sucrose metabolism and accumulation in sugarcane. This study discovered that the DEPs of SPS (SPS2, SPS5) were upregulated, while SuSy, CWIN, NIN1, CINV2 were downregulated in the maturing internodes, and seven DEPs of trehalose phosphate synthase such as TPS6, TPS7, TPS9, TPS9, and trehalose phosphate phosphatase were downregulated in the immature and maturing internodes of GXB9 compared with B9. The result of our exploration would mediate progression in sugarcane varieties by concentrating on the manipulation of proteins associated with sucrose synthesis, metabolism, and accumulation through the use of advanced molecular approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alessio, V.M., N. Cavaçana, L.L.D.B. Dantas, N. Lee, C.T. Hotta, T. Imaizumi, and M. Menossi. 2018. The FBH family of bHLH transcription factors controls ACC synthase expression in sugarcane. Journal of Experimental Botany 69 (10): 2511–2525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali, A., M. Khan, R. Sharif, M. Mujtaba, and S.J. Gao. 2019. Sugarcane Omics: An update on the current status of research and crop improvement. Plants 8 (9): 344.

    Article  CAS  PubMed Central  Google Scholar 

  • Ali, A., N. Chu, P. Ma, T. Javed, U. Zaheer, M.T. Huang, and S.J. Gao. 2021. Genome-wide analysis of mitogen-activated protein (MAP) kinase gene family expression in response to biotic and abiotic stresses in sugarcane. Physiologia Plantarum 171 (1): 86–107.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, N.G., and N.L. Anderson. 1996. Twenty years of two-dimensional electrophoresis: Past, present and future. Electrophoresis 17 (3): 443–453.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, N.L., and N.G. Anderson. 1998. Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis 19 (11): 1853–1861.

    Article  CAS  PubMed  Google Scholar 

  • Ardito, F., M. Giuliani, D. Perrone, G. Troiano, and L. Lo Muzio. 2017. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. International Journal of Molecular Medicine 40 (2): 271–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee, A., and A. Roychoudhury. 2017. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 254 (1): 3–16.

    Article  CAS  PubMed  Google Scholar 

  • Barnabas, L., A. Ramadass, R.S. Amalraj, M. Palaniyandi, and V. Rasappa. 2015. Sugarcane proteomics: An update on current status, challenges, and future prospects. Proteomics 15 (10): 1658–1670.

    Article  CAS  PubMed  Google Scholar 

  • Blackstock, W.P., and M.P. Weir. 1999. Proteomics: Quantitative and physical mapping of cellular proteins. Trends in Biotechnology 17 (3): 121–127.

    Article  CAS  PubMed  Google Scholar 

  • Cabib, E., and L.F. Leloir. 1958. The biosynthesis of trehalose phosphate. Journal of Biological Chemistry 231 (1): 259–275.

    Article  CAS  PubMed  Google Scholar 

  • Castelán-Muñoz, N., J. Herrera, W. Cajero-Sánchez, M. Arrizubieta, C. Trejo, B. García-Ponce, and A. Garay-Arroyo. 2019. MADS-box genes are key components of genetic regulatory networks involved in abiotic stress and plastic developmental responses in plants. Frontiers in Plant Science 10: 853.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandrasekhar, K., A. Dileep, D.E. Lebonah, and J. Pramoda Kumari. 2014. A short review on proteomics and its applications. International Letters of Natural Sciences 17: 77–84.

    Article  Google Scholar 

  • Chen, L.Q., X.Q. Qu, B.H. Hou, D. Sosso, S. Osorio, A.R. Fernie, and W.B. Frommer. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335 (6065): 207–211.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., C. Qin, M. Wang, F. Liao, Q. Liao, X. Liu, and D. Huang. 2019. Ethylene-mediated improvement in sucrose accumulation in ripening sugarcane involves increased sink strength. BMC Plant Biology 19 (1): 1–17.

    Article  Google Scholar 

  • Cheng, J., S. Wen, S. Xiao, B. Lu, M. Ma, and Z. Bie. 2018. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation. Journal of Experimental Botany 69 (3): 511–523.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, H.D., D.D. Ellis, M. Gilbert, and S.D. Mansfield. 2006. Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism. Plant Biotechnology Journal 4 (1): 87–101.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, H.D., J. Yan, and S.D. Mansfield. 2009. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proceedings of the National Academy of Sciences 106 (31): 13118–13123.

    Article  CAS  Google Scholar 

  • Coleman, H.D., L. Beamish, A. Reid, J.Y. Park, and S.D. Mansfield. 2010. Altered sucrose metabolism impacts plant biomass production and flower development. Transgenic Research 19 (2): 269–283.

    Article  CAS  PubMed  Google Scholar 

  • D’Hont, A. 2005. Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenetic and Genome Research 109 (1–3): 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Elbein, A.D., Y. Pan, I. Pastuszak, and D. Carroll. 2003. New insights on trehalose: A multifunctional molecule. Glycobiology 13 (4): 17R-27R.

    Article  CAS  PubMed  Google Scholar 

  • Fan, Y.G., R.F. Chen, L.H. Qiu, Z.F. Zhou, H.W. Zhou, J.G. Wei, and X. Huang. 2021. Quantitative proteomics analysis of sugarcane ratoon crop chlorosis. Sugar Tech 23 (3): 673–681.

    Article  CAS  Google Scholar 

  • Figueroa, C.M., and J.E. Lunn. 2016. A tale of two sugars: Trehalose 6-phosphate and sucrose. Plant Physiology 172 (1): 7–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia Tavares, R., P. Lakshmanan, E. Peiter, A. O’Connell, C. Caldana, R. Vicentini, and M. Menossi. 2018. ScGAI is a key regulator of culm development in sugarcane. Journal of Experimental Botany 69 (16): 3823–3837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geisler-Lee, J., M. Geisler, P.M. Coutinho, B. Segerman, N. Nishikubo, J. Takahashi, and S. Andersson-Gunnerås. 2006. Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiology 140 (3): 946–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grof, C.P., and J.A. Campbell. 2001. Sugarcane sucrose metabolism: Scope for molecular manipulation. Functional Plant Biology 28 (1): 1–12.

    Article  CAS  Google Scholar 

  • Grof, C.P., C.S. Byrt, and J.W. Patrick. 2014. Phloem transport of resources. In: World Agriculture Series. Sugarcane: Physiology, Biochemistry & Functional Biology, pp. 267–305. Moore, P.H. and Botha, F.C. John Wiley & Sons, Somerset.

  • Hayamichi, Y. 1997. Effects of abscisic acid treatment on the growth and sugar accumulation of sugarcane plant. Japanese Journal of Tropical Agriculture 41 (1): 22–26.

    Google Scholar 

  • Hoang, N.V., A. Furtado, F.C. Botha, B.A. Simmons, and R.J. Henry. 2015. Potential for genetic improvement of sugarcane as a source of biomass for biofuels. Frontiers in Bioengineering and Biotechnology 3: 182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, J., C. Rampitsch, and N.V. Bykova. 2015. Advances in plant proteomics toward improvement of crop productivity and stress resistancex. Frontiers in Plant Science 6: 209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, R., Y. Xu, C. Yu, K. He, Q. Tang, C. Jia, and G. Zhou. 2017. Transcriptome analysis of genes involved in secondary cell wall biosynthesis in developing internodes of Miscanthus lutarioriparius. Scientific Reports 7 (1): 1–16.

    CAS  Google Scholar 

  • Hu, W., X. Hua, Q. Zhang, J. Wang, Q. Shen, X. Zhang, and R. Ming. 2018. New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics. BMC Plant Biology 18 (1): 1–20.

    Article  CAS  Google Scholar 

  • Huang, D.L., S.X. LI, Q. Liao, C.X. Qin, L. Lin, F.X. Fang, and Y.R. LI. 2012. Advances on sucrose phosphate synthase in plants. China Biotechnology 32 (6): 109–119.

    Google Scholar 

  • Huang, D.L., C.X. Qin, Y.Y. Gui, L.H. Zhao, Z.L. Chen, M. Wang, and P. Lakshmanan. 2017. Role of the SPS gene families in the regulation of sucrose accumulation in sugarcane. Sugar Tech 19 (2): 117–124.

    Article  CAS  Google Scholar 

  • Inman-Bamber, G., P. Jackson, G. Bonnett, and T. Morgan. 2011. Have we reached peak CCS? International Sugar Journal 113 (1355): 798–803.

    Google Scholar 

  • Jakoby, M., B. Weisshaar, W. Dröge-Laser, J. Vicente-Carbajosa, J. Tiedemann, T. Kroj, and F. Parcy. 2002. bZIP transcription factors in Arabidopsis. Trends in Plant Science 7 (3): 106–111.

    Article  CAS  PubMed  Google Scholar 

  • Julius, B.T., K.A. Leach, T.M. Tran, R.A. Mertz, and D.M. Braun. 2017. Sugar transporters in plants: New insights and discoveries. Plant and Cell Physiology 58 (9): 1442–1460.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S.G., J. Price, P.C. Lin, J.C. Hong, and J.C. Jang. 2010. The Arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding. Molecular Plant 3 (2): 361–373.

    Article  CAS  PubMed  Google Scholar 

  • Kawaoka, A., K. Nanto, K. Ishii, and H. Ebinuma. 2006. Reduction of lignin content by suppression of expression of the LIM domain transcription factor in Eucalyptus camaldulensis. Silvae Genetica 55 (1–6): 269–277.

    Article  Google Scholar 

  • Kersten, B., G.K. Agrawal, P. Durek, J. Neigenfind, W. Schulze, D. Walther, and R. Rakwal. 2009. Plant phosphoproteomics: An update. Proteomics 9 (4): 964–988.

    Article  CAS  PubMed  Google Scholar 

  • Khan, Q., J.Y. Chen, X.P. Zeng, Y. Qin, D.J. Guo, A. Mahmood, L.T. Yang, Q. Liang, X.P. Song, Y.X. Xing, and Y.R. Li. 2021. Transcriptomic exploration of a high sucrose mutant in comparison with the low sucrose mother genotype in sugarcane during sugar accumulating stage. GCB Bioenergy 13: 1448–1465.

    Article  CAS  Google Scholar 

  • Kim, M., and D.F. Day. 2011. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. Journal of Industrial Microbiology and Biotechnology 38 (7): 803–807.

    Article  CAS  PubMed  Google Scholar 

  • Komor, E. 2000. Source physiology and assimilate transport: The interaction of sucrose metabolism, starch storage and phloem export in source leaves and the effects on sugar status in phloem. Functional Plant Biology 27 (6): 497–505.

    Article  CAS  Google Scholar 

  • Kosova, K., P. Vitamvas, I.T. Prasil, and J. Renaut. 2011. Plant proteome changes under abiotic stresscontribution of proteomics studies to understanding plant stress response. Journal of Proteomics 74 (8): 1301–1322.

    Article  CAS  PubMed  Google Scholar 

  • Langenkämper, G., R.W. Fung, R.D. Newcomb, R.G. Atkinson, R.C. Gardner, and E.A. MacRae. 2002. Sucrose phosphate synthase genes in plants belong to three different families. Journal of Molecular Evolution 54 (3): 322–332.

    Article  PubMed  Google Scholar 

  • Li, C.N., L.T. Yang, M.K. Srivastava, and Y.R. Li. 2014. Foliar application of abscisic acid improves drought tolerance of sugarcane plant under severe water stress. International Journal of Agriculture Innovations and Research 3 (1): 101–107.

    CAS  Google Scholar 

  • Li, Z., X. Hua, W. Zhong, Y. Yuan, Y. Wang, Z. Wang, and J. Zhang. 2020. Genome-wide identification and expression profile analysis of WRKY family genes in the autopolyploid Saccharum spontaneum. Plant and Cell Physiology 61 (3): 616–630.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Q. Nong, J. Xie, Z. Wang, Q. Liang, M.K. Solanki, and R. Htun. 2017. Molecular characterization and co-expression analysis of the SnRK2 gene family in sugarcane (Saccharum officinarum L.). Scientific Reports 7 (1): 1–12.

    Article  CAS  Google Scholar 

  • Liu, J., A. Osbourn, and P. Ma. 2015. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Molecular Plant 8 (5): 689–708.

    Article  CAS  PubMed  Google Scholar 

  • Ljung, K., J.L. Nemhauser, and P. Perata. 2015. New mechanistic links between sugar and hormone signalling networks. Current Opinion in Plant Biology 25: 130–137.

    Article  CAS  PubMed  Google Scholar 

  • Ma, P., X. Zhang, L. Chen, Q. Zhao, Q. Zhang, X. Hua, and M. Zhang. 2020. Comparative analysis of sucrose phosphate synthase (SPS) gene family between Saccharum officinarum and Saccharum spontaneum. BMC Plant Biology 20 (1): 1–15.

    Article  CAS  Google Scholar 

  • McCarthy, R.L., R. Zhong, and Z.H. Ye. 2009. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant and Cell Physiology 50 (11): 1950–1964.

    Article  CAS  PubMed  Google Scholar 

  • Milne, R.J., C.S. Byrt, J.W. Patrick, and C.P. Grof. 2013. Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes? Frontiers in Plant Science 4: 223.

    Article  PubMed  PubMed Central  Google Scholar 

  • Milne, R.J., J.M. Perroux, A.L. Rae, A. Reinders, J.M. Ward, C.E. Offler, and C.P. Grof. 2017. Sucrose transporter localization and function in phloem unloading in developing stems. Plant Physiology 173 (2): 1330–1341.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno, H., S. Kasuga, and H. Kawahigashi. 2016. The sorghum SWEET gene family: Stem sucrose accumulation as revealed through transcriptome profiling. Biotechnology for Biofuels 9 (1): 1–12.

    Article  CAS  Google Scholar 

  • Moore, P.H. 1995. Temporal and spatial regulation of sucrose accumulation in the sugarcane stem. Functional Plant Biology 22 (4): 661–679.

    Article  CAS  Google Scholar 

  • Moore, P.H. 1980. Additive and nonadditive effects of serial applications of gibberellic acid on sugarcane internode growth. Physiologia Plantarum 49 (3): 271–276.

    Article  CAS  Google Scholar 

  • Mustafa, G., and M.S. Khan. 2016. Differential role of indolebutyric acid in sugarcane root development. Sugar Tech 18 (1): 55–60.

    Article  CAS  Google Scholar 

  • Nguyen, C.T., L.H. Dang, D.T. Nguyen, K.P. Tran, B.L. Giang, and N.Q. Tran. 2019. Effect of GA3 and Gly plant growth regulators on productivity and sugar content of sugarcane. Agriculture 9 (7): 136.

    Article  CAS  Google Scholar 

  • Nishiyama, Y., J. Sugiyama, H. Chanzy, and P. Langan. 2003. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society 125 (47): 14300–14306.

    Article  CAS  PubMed  Google Scholar 

  • Niu, J., A. Wang, J. Huang, L. Yang, and Y. Li. 2014. Cloning and expression analysis of sugarcane alkaline/neutral invertase gene SoNIN1. Acta Agronomica Sinica 40 (2): 253–263.

    Article  CAS  Google Scholar 

  • Patrick, J. 1997. Phloem unloading: Sieve element unloading and post-sieve element transport. Annual Review of Plant Biology 48 (1): 191–222.

    Article  CAS  Google Scholar 

  • Patrick, J.W., F.C. Botha, and R.G. Birch. 2013. Metabolic engineering of sugars and simple sugar derivatives in plants. Plant Biotechnology Journal 11 (2): 142–156.

    Article  CAS  PubMed  Google Scholar 

  • Paul, M.J., A. Gonzalez-Uriarte, C.A. Griffiths, and K. Hassani-Pak. 2018. The role of trehalose 6-phosphate in crop yield and resilience. Plant Physiology 177 (1): 12–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponnu, J., V. Wahl, and M. Schmid. 2011. Trehalose-6-phosphate: Connecting plant metabolism and development. Frontiers in Plant Science 2: 70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rae, A.L., C.P. Grof, R.E. Casu, and G.D. Bonnett. 2005. Sucrose accumulation in the sugarcane stem: Pathways and control points for transport and compartmentation. Field Crops Research 92 (2–3): 159–168.

    Article  Google Scholar 

  • Rahmani, F., M. Hummel, J. Schuurmans, A. Wiese-Klinkenberg, S. Smeekens, and J. Hanson. 2009. Sucrose control of translation mediated by an upstream open reading frame-encoded peptide. Plant Physiology 150 (3): 1356–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai, R.K., N. Tripathi, D. Gautam, and P. Singh. 2017. Exogenous application of ethrel and gibberellic acid stimulates physiological growth of late planted sugarcane with short growth period in sub-tropical India. Journal of Plant Growth Regulation 36 (2): 472–486.

    Article  CAS  Google Scholar 

  • Roitsch, T., and M.C. González. 2004. Function and regulation of plant invertases: Sweet sensations. Trends in Plant Science 9 (12): 606–613.

    Article  CAS  PubMed  Google Scholar 

  • Rosche, E., D. Blackmore, M. Tegeder, T. Richardson, H. Schroeder, T.J. Higgins, and J.W. Patrick. 2002. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons. The Plant Journal 30 (2): 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Ross, P.L., Y.N. Huang, J.N. Marchese, B. Williamson, K. Parker, S. Hattan, and S. Daniels. 2004. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & Cellular Proteomics 3 (12): 1154–1169.

    Article  CAS  Google Scholar 

  • Ruan, Y.L. 2014. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology 65: 33–67.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, T., M. Kobayashi, H. Itoh, A. Tagiri, T. Kayano, H. Tanaka, and M. Matsuoka. 2001. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiology 125 (3): 1508–1516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangha, J.S., Y.H. Chen, J. Kaur, W. Khan, Z. Abduljaleel, M.S. Alanazi, and B. Prithiviraj. 2013. Proteome analysis of rice (Oryza sativa L.) mutants reveals differentially induced proteins during brown planthopper (Nilaparvata lugens) infestation. International Journal of Molecular Sciences 14 (2): 3921–3945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer, W.E., J.M. Rohwer, and F.C. Botha. 2004. Protein-level expression and localization of sucrose synthase in the sugarcane culm. Physiologia Plantarum 121 (2): 187–195.

    Article  PubMed  Google Scholar 

  • Shen, L.B., Y. Yao, H. He, Y.L. Qin, Z.J. Liu, W.X. Liu, and Y. Yang. 2018. Genome-wide identification, expression, and functional analysis of the alkaline/neutral invertase gene family in pepper. International Journal of Molecular Sciences 19 (1): 224.

    Article  PubMed Central  CAS  Google Scholar 

  • Slewinski, T.L. 2012. Non-structural carbohydrate partitioning in grass stems: A target to increase yield stability, stress tolerance, and biofuel production. Journal of Experimental Botany 63 (13): 4647–4670.

    Article  CAS  PubMed  Google Scholar 

  • Sturm, A. 1999. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiology 121 (1): 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, Y., L. Xu, Z. Wang, Q. Peng, Y. Yang, Y. Chen, and Y. Que. 2016. Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane. BMC Genomics 17 (1): 1–21.

    Article  Google Scholar 

  • Suresha, G., C. Mahadevaiah, and C. Appunu. 2017. Biotechnological interventions for improving sucrose accumulation in sugarcane. In Sugarcane Biotechnology: Challenges and Prospects (pp. 111–122). Springer.

  • Teixeira, M.A., A. Rajewski, J. He, O.G. Castaneda, A. Litt, and I. Kaloshian. 2018. Classification and phylogenetic analyses of the Arabidopsis and tomato G-type lectin receptor kinases. BMC Genomics 19 (1): 1–20.

    Article  CAS  Google Scholar 

  • Thirugnanasambandam, P.P., P.J. Mason, N.V. Hoang, A. Furtado, F.C. Botha, and R.J. Henry. 2019. Analysis of the diversity and tissue specificity of sucrose synthase genes in the long-read transcriptome of sugarcane. BMC Plant Biology 19 (1): 1–14.

    Article  Google Scholar 

  • Vargas, W.A., and G.L. Salerno. 2010. The cinderella story of sucrose hydrolysis: Alkaline/neutral invertases, from cyanobacteria to unforeseen roles in plant cytosol and organelles. Plant Science 178 (1): 1–8.

    Article  CAS  Google Scholar 

  • Verma, A.K., S. Upadhyay, P.C. Verma, S. Solomon, and S.B. Singh. 2011. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars. Plant Biology 13 (2): 325–332.

    Article  CAS  PubMed  Google Scholar 

  • Wai, C.M., J. Zhang, T.C. Jones, C. Nagai, and R. Ming. 2017. Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population. BMC Genomics 18 (1): 1–14.

    Article  CAS  Google Scholar 

  • Wang, Z., W. Duan, Y. Li, Q. Liang, Z. Zhou, M. Zhang, and S. Lin. 2016. Establishment of an evaluation system for field resistance against sugarcane pokkah boeng. Journal of South China Agricultural University 37 (3): 67-72.

    Google Scholar 

  • Wasinger, V.C., S.J. Cordwell, A. Cerpa-Poljak, J.X. Yan, A.A. Gooley, M.R. Wilkins, and I. Humphery-Smith. 1995. Progress with gene-product mapping of the mollicutes: Mycoplasma genitalium. Electrophoresis 1 (1): 1090–1094.

    Article  Google Scholar 

  • Wilkins, M.R., J.C. Sanchez, A.A. Gooley, R.D. Appel, I. Humphery-Smith, D.F. Hochstrasser, and K.L. Williams. 1996. Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnology and Genetic Engineering Reviews 13 (1): 19–50.

    Article  CAS  PubMed  Google Scholar 

  • Wind, J., S. Smeekens, and J. Hanson. 2010. Sucrose: Metabolite and signaling molecule. Phytochemistry 71 (14–15): 1610–1614.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., W. Liu, L. Yuan, W.Q. Guan, C.S. Brennan, Y.Y. Zhang, and Z.D. Wang. 2017. The influence of postharvest UV-C treatment on anthocyanin biosynthesis in fresh-cut red cabbage. Scientific Reports 7 (1): 1–11.

    CAS  Google Scholar 

  • Yadav, R., and S. Solomon. 2006. Potential of developing sugarcane by-product-based industries in India. Sugar Tech 8 (2/3): 104–111.

    Article  Google Scholar 

  • Yadav, U.P., A. Ivakov, R. Feil, G.Y. Duan, D. Walther, P. Giavalisco, and M. Stitt. 2014. The sucrose trehalose 6-phosphate (Tre6P) nexus: Specificity and mechanisms of sucrose signalling by Tre6P. Journal of Experimental Botany 65 (4): 1051–1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki, K., and K. Shinozaki. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology 57: 781–803.

    Article  CAS  PubMed  Google Scholar 

  • YaoLiZhangYang, R.I.Y.R.G.R.L.T. 2002. Endogenous hormone levels at technical maturing stage of sugarcane. Sugar Tech 4 (1): 14–18.

    Google Scholar 

  • Zhang, J., M. Zhou, J. Walsh, L. Zhu, Y. Chen and R. Ming 2014. Sugarcane genetics and genomics. Sugarcane: Physiology, Biochemistry, and Functional Biology. Edited by Moore PH, Botha FC. Wiley-Blackwell physiology, biochemistry, and functional biology. Edited by Moore PH, Botha FC. Wiley-Blackwell Publishing: 623–643.

  • Zhang, X., M. Chen, Y. Liang, Y. Xing, L. Yang, M. Chen, and L. Yang. 2016. Morphological and physiological responses of sugarcane to Leifsonia xyli subsp. xyli infection. Plant Disease 100 (12): 2499–2506.

    Article  CAS  PubMed  Google Scholar 

  • Zieske, L.R. 2006. A perspective on the use of iTRAQ™ reagent technology for protein complex and profiling studies. Journal of Experimental Botany 57 (7): 1501–1508.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd. http://www.majorbio.com/ (Shanghai, China) for the sequencing, transcriptomic, and bioinformatics analysis.

Funding

This work was financially supported by Guangxi Special Fund for Scientific Base and Talent (GKAD17195100), Fund for Guangxi Innovation Teams of Modern Agriculture Technology (gjnytxgxcxtd-03–01), and Fund of Guangxi Academy of Agricultural Sciences (2021YT011).

Author information

Authors and Affiliations

Authors

Contributions

Q.K., Y.Q., L.Z., X.X., D.J.G., and Q.L. performed the experiment and did bioinformatics analysis. L.T.Y., X.P.S., Y.X.X., and Y.R.L. supervised the project. Q.K., L.T.Y., X.P.S., Y.X.X, and Y.R.L. designed the study. Q.K., X.P.S., Y.X.X, and Y.R.L. participated in writing the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Xiu-Peng Song, Yong-Xiu Xing or Yang-Rui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The data that support the findings of this study are available in the supplementary material of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Q., Qin, Y., Guo, DJ. et al. Proteome Based Comparative Investigation of a High Sucrose Sugarcane Mutant in Contrast to the Low Sucrose Mother Variety by Using TMT Quantitative Proteomics. Sugar Tech 24, 1246–1259 (2022). https://doi.org/10.1007/s12355-022-01160-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-022-01160-0

Keywords

Navigation