Skip to main content
Log in

Innovative Use of Sugarcane Bagasse Ash in Green Alkali-Activated Slag Material: Effects of Activator Concentration on the Blended Pastes

  • S.I. : Diversification of Sugar Crops for Value Addition
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Alkali-activated slag material (AAS) is widely accepted as an alternative binder that can be used in place of Portland cement. The present study is aimed to assess fresh and hardened AAS pastes modified with sugarcane bagasse ash (SBA)—a combustion byproduct of sugarcane bagasse ash in sugar cane industries and to investigate effects of alkali-activated dosage (sodium hydroxide and sodium silicate) on properties of the slag/SBA-based system (slag/SBA mass ratio = 100/0, 90/10, 80/20, 70/30, 60/40). Testing results on fresh paste indicate that loss of workability occurs when increasing either activator concentrations (\({M}_{s}\) = SiO2/Na2O and \(n\) = %Na2O/binder) or SBA content. Moreover, increase in \(n\) and \({M}_{s}\)-values leads to considerably shorten the setting time. For hardened pastes, when increasing Na2O percentage (\(n\)) from 6 to 8%, the compressive strength increases by 16% and 29% for specimens without and with 40% SBA, respectively; higher \({M}_{s}\) performs a gradual increase in strength for specimens modified with up to 20% SBA. In addition, raising both \(n\) and \({M}_{s}\) results in improving the sulfate attack resistance and lowering water absorption. It can be said that mix proportion of the alkali-activated slag-SBA mixtures could be achieved with balance of the fresh behavior, strength, and durability. Based on this aspect, alkali-activated mixtures containing 20% SBA (80/20) would be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aliabdo, A.A., A.E.M. Abd Elmoaty, and M.A. Emam. 2019. Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete. Construction and Building Materials 197: 339–355.

    Article  CAS  Google Scholar 

  • Allahverdi, A., B. Shaverdi, and E. Najafi Kani. 2010. Influence of Sodium Oxide on Properties of Fresh and Hardened Paste of Alkali-Activated Blast-Furnace Slag. International Journal of Civil Engineering 8 (4): 304–314.

    Google Scholar 

  • Asadi, I., P. Shafigh, Z.F.B. Abu Hassan, and N.B. Mahyuddin. 2018. Thermal conductivity of concrete—A review. Journal of Building Engineering 20: 81–93.

    Article  Google Scholar 

  • ASTM International. 2008a. ASTM C109/C109M-08, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). West Conshohocken: ASTM International.

  • ASTM International. 2008b. ASTM C191–08, Time of Setting of Hydraulic Cement by Vicat Needle. West Conshohocken: ASTM International.

  • ASTM International. 2009. ASTM C597-09, Test for Pulse Velocity Through Concrete. West Conshohocken: ASTM International.

  • ASTM International. 2010. ASTM C989-10, Standard Specification for Slag Cement for Use in Concrete and Mortars. West Conshohocken: ASTM International.

  • ASTM International. 2011. ASTM C490/C490M-11, Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete. West Conshohocken: ASTM International.

  • ASTM International. 2012. ASTM C1012/C1012-12, Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution. West Conshohocken: ASTM International.

  • ASTM International. 2013. ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. West Conshohocken: ASTM International.

  • ASTM International. 2017a. ASTM C157/C157M-17, Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete. West Conshohocken: ASTM International.

  • ASTM International. 2017b. ASTM D5930-17, Standard Test Method for Thermal Conductivity of Plastics by Means of a Transient Line-Source Technique. West Conshohocken: ASTM International.

  • ASTM International. 2018. ASTM C150/C150M-18, Standard Specification for Portland Cement. West Conshohocken: ASTM International.

  • Atiş, C.D., C. Bilim, Ö. Çelik, and O. Karahan. 2009. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Construction and Building Materials 23 (1): 548–555.

    Article  Google Scholar 

  • Awoyera, P., and A. Adesina. 2019. A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials 11: e00268.

    Article  Google Scholar 

  • Bahurudeen, A., and M. Santhanam. 2015. Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash. Cement and Concrete Composites 56: 32–45.

    Article  CAS  Google Scholar 

  • Bahurudeen, A., D. Kanraj, V. Gokul Dev, and M. Santhanam. 2015. Performance evaluation of sugarcane bagasse ash blended cement in concrete. Cement and Concrete Composites 59: 77–88.

    Article  CAS  Google Scholar 

  • Bakharev, T., J.G. Sanjayan, and Y.B. Cheng. 1999. Alkali activation of Australian slag cements. Cement and Concrete Research 29 (1): 113–120.

    Article  CAS  Google Scholar 

  • Bernal, S.A., J.L. Provis, V. Rose, and R. Mejía de Gutierrez. 2011. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cement and Concrete Composites 33 (1): 46–54.

    Article  CAS  Google Scholar 

  • Bondar, D., C.J. Lynsdale, N.B. Milestone, and N. Hassani. 2015. Sulfate Resistance of Alkali Activated Pozzolans. International Journal of Concrete Structures and Materials 9 (2): 145–158.

    Article  CAS  Google Scholar 

  • Bondar, D., Q. Ma, M. Soutsos, M. Basheer, J.L. Provis, and S. Nanukuttan. 2018. Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity. Construction and Building Materials 190: 191–199.

    Article  CAS  Google Scholar 

  • Castaldelli, V.N., J.L. Akasaki, J.L.P. Melges, M.M. Tashima, L. Soriano, M.V. Borrachero, J. Monzo, and J. Paya. 2013. Use of Slag/Sugar Cane Bagasse Ash (SCBA) Blends in the Production of Alkali-Activated Materials. Materials 6 (8): 3108–3127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castaldelli, V.N., M.M. Tashima, J.L.P. Melges, J.L. Akasaki, J.M. Monzó, M.V. Borrachero, L. Soriano, and J. Payá. 2014. Preliminary Studies on the use of Sugar Cane Bagasse Ash (SCBA) in the Manufacture of Alkali Activated Binders. Key Engineering Materials 600: 689–698.

    Article  CAS  Google Scholar 

  • Chi, M. 2012. Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete. Construction and Building Materials 35: 240–245.

    Article  Google Scholar 

  • Choktaweekarn, P., W. Saengsoy, and S. Tangtermsirikul. 2009. A model for predicting thermal conductivity of concrete. Magazine of Concrete Research 61 (4): 271–280.

    Article  CAS  Google Scholar 

  • Deepika, S., G. Anand, A. Bahurudeen, and M. Santhanam. 2017. Construction Products with Sugarcane Bagasse Ash Binder. Journal of Materials in Civil Engineering 29 (10): 04017189.

    Article  Google Scholar 

  • Duran, Atiş C., C. Bilim, Ö. Çelik, and O. Karahan. 2009. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Construction and Building Materials 23 (1): 548–555.

    Article  Google Scholar 

  • Gao, X., Q.L. Yu, and H.J.H. Brouwers. 2015. Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends. Construction and Building Materials 80: 105–115.

    Article  Google Scholar 

  • Gao, X., Q.L. Yu, and H.J.H. Brouwers. 2015. Properties of alkali activated slag–fly ash blends with limestone addition. Cement and Concrete Composites 59: 119–128.

    Article  CAS  Google Scholar 

  • Gao, X., Q.L. Yu, and H.J.H. Brouwers. 2016. Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model. Construction and Building Materials 119: 175–184.

    Article  CAS  Google Scholar 

  • Kazmi, S.M.S., M.J. Munir, I. Patnaikuni, and Y.F. Wu. 2017. Pozzolanic reaction of sugarcane bagasse ash and its role in controlling alkali silica reaction. Construction and Building Materials 148: 231–240.

    Article  CAS  Google Scholar 

  • Kumar, D.S.S., K. Chethan, and B.C. Kumar. 2021. Effect of Elevated Temperatures on Sugarcane Bagasse Ash-Based Alkali-Activated Slag Concrete. Sugar Tech 23 (2): 369–381.

    Article  CAS  Google Scholar 

  • Le, D.H., Y.N. Sheen, and M.N.T. Lam. 2018. Fresh and hardened properties of self-compacting concrete with sugarcane bagasse ash–slag blended cement. Construction and Building Materials 185: 138–147.

    Article  Google Scholar 

  • Lee, N.K., and H.K. Lee. 2013. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construction and Building Materials 47: 1201–1209.

    Article  Google Scholar 

  • Luukkonen, T., Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, and M. Illikainen. 2018. One-part alkali-activated materials: A review. Cement and Concrete Research 103: 21–34.

    Article  CAS  Google Scholar 

  • Mehta, P.K., and P.J.M. Monteiro. 2014. Concrete, microstructure, properties and materials, 3rd ed. New York: McGraw-Hill Education.

    Google Scholar 

  • Melo Neto, A.A., M.A. Cincotto, and W. Repette. 2008. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cement and Concrete Research 38 (4): 565–574.

    Article  CAS  Google Scholar 

  • Murugesan, T., R. Vidjeapriya, and A. Bahurudeen. 2020. Development of Sustainable Alkali Activated Binder for Construction Using Sugarcane Bagasse Ash and Marble Waste. Sugar Tech 22 (5): 885–895.

    Article  CAS  Google Scholar 

  • Nguyen, T.T., Q.T. Hoang, T.T. Nguyen, T.A. Pham, A.D. Cao, H.D. Pham, V.H. Le, T.T. Vu, N.H. Pham, T.C. Nguyen, K.A. To, V.H. Nguyen, Q.T. Phi, V.H. Tran, T.T. Dang, Q.D. Lai, R. Lionnet, and S. Chu-Ky. 2022. Research and Development Prospects for Sugarcane Industry in Vietnam. Sugar Tech. https://doi.org/10.1007/s12355-022-01113-7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira, A., J.L. Akasaki, J.L.P. Melges, M.M. Tashima, L. Soriano, M.V. Borrachero, J. Monzó, and J. Payá. 2015. Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag. Ceramics International 41 (10, Part A): 13012–13024.

    Article  CAS  Google Scholar 

  • Phoo-ngernkham, T., A. Maegawa, N. Mishima, S. Hatanaka, and P. Chindaprasirt. 2015. Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer. Construction and Building Materials 91: 1–8.

    Article  Google Scholar 

  • Provis, J.L., and J.S. Van Deventer. 2013. Alkali activated materials: State-of-the-art report, RILEM TC 224-AAM, vol. 13. Dordrecht: Springer.

    Google Scholar 

  • Puertas, F., B. González-Fonteboa, I. González-Taboada, M.M. Alonso, M. Torres-Carrasco, G. Rojo, and F. Martínez-Abella. 2018. Alkali-activated slag concrete: Fresh and hardened behaviour. Cement and Concrete Composites 85: 22–31.

    Article  CAS  Google Scholar 

  • Ravikumar, D., and N. Neithalath. 2012. Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH. Cement and Concrete Composites 34 (7): 809–818.

    Article  CAS  Google Scholar 

  • Shi, Z., C. Shi, R. Zhao, and S. Wan. 2015. Comparison of alkali–silica reactions in alkali-activated slag and Portland cement mortars. Materials and Structures 48 (3): 743–751.

    Article  CAS  Google Scholar 

  • Thomas, R.J., D. Lezama, and S. Peethamparan. 2017. On drying shrinkage in alkali-activated concrete: Improving dimensional stability by aging or heat-curing. Cement and Concrete Research 91: 13–23.

    Article  CAS  Google Scholar 

  • Xu, Q., T. Ji, S.J. Gao, Z. Yang, and N. Wu. 2018. Characteristics and Applications of Sugar Cane Bagasse Ash Waste in Cementitious Materials. Materials 12 (1): 39.

    Article  PubMed Central  Google Scholar 

  • Yang, K.H., J.K. Song, A.F. Ashour, and E.T. Lee. 2008. Properties of cementless mortars activated by sodium silicate. Construction and Building Materials 22 (9): 1981–1989.

    Article  Google Scholar 

  • Yang, T.R., T.P. Chang, B. Chen, J.Y. Shih, and W.L. Lin. 2012. Effect of alkaline solutions on engineering properties of alkali-activated GGBFS paste. Journal of Marine Science and Technology 20 (3): Article 10.

    Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 107.01-2020.01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc-Hien Le.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheen, YN., Le, DH. Innovative Use of Sugarcane Bagasse Ash in Green Alkali-Activated Slag Material: Effects of Activator Concentration on the Blended Pastes. Sugar Tech 24, 1037–1051 (2022). https://doi.org/10.1007/s12355-022-01141-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-022-01141-3

Keywords

Navigation