Skip to main content

Advertisement

Log in

Integrated Application of Nitrogen, Molybdenum and Plant Growth-Promoting Rhizobacterium can Enhance the Sugarcane Growth

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Adequate nitrogen (N) supply plays an important role in sugarcane production. Efficiency of N fertilization can be enhanced through fertilization with molybdenum (Mo) and inoculation with plant growth-promoting rhizobacteria (PGPR). This study assessed the development of sugarcane inoculated with PGPR and fertilized with Mo and N. The field experiment was carried out in randomized blocks and factorial arrangement (2 × 2 × 2), using two Mo doses and two N doses in plants without and with inoculation of PGPR Stenotrophomonas sp. (UAGC 869). We evaluated the varieties RB867515 and RB92579 at the beginning and end of the vegetative growth in the cane plant and ratoon cycles. There was no effect triple interaction. In both varieties and cycles, N stimulated production of shoot dry mass (SDM). Mo favored the initial development in both cycles of RB867515 but this effect was not observed in pre-harvesting. The UAGC 869 rhizobacteria increased the root dry mass above 70% in both cycles of RB867515. In the ratoon cycle, this gain results in SDM reduction of this variety. In RB92579, N and UAGC 869 interaction increased stalk growth, tillering, and SDM production in the plant cane cycle, surpassing N fertilization. Mo showed effect in the ratoon cycle only, when inoculation did not promote the growth of this variety. The beneficial interaction of inoculation with N or Mo on the development of sugarcane depends on the variety and the cycle evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

References

  • Alvares, C.A., J.L. Stape, P.C. Sentelhas, J.L.M. Gonçalves, and G. Sparovek. 2013. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22 (6): 711–728. https://doi.org/10.1127/0941-2948/2013/0507.

    Article  Google Scholar 

  • Arkhipova, T.N., N.V. Evseeva, O.V. Tkachenko, G.L. Burygin, L.B. Vysotskaya, Z.A. Akhtyamova, and G.R. Kudoyarova. 2020. Rhizobacteria inoculation effects on phytohormone status of potato microclones cultivated in vitro under osmotic stress. Biomolecules 10 (9): 1–12. https://doi.org/10.3390/biom10091231.

    Article  CAS  Google Scholar 

  • Bouguyon, E., A. Gojon, and P. Nacry. 2012. Nitrate sensing and signaling in plants. Seminars in Cell and Developmental Biology 23 (6): 648–654. https://doi.org/10.1016/j.semcdb.2012.01.004.

    Article  CAS  PubMed  Google Scholar 

  • Cassán, F., J. Vanderleyden, and S. Spaepen. 2014. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation 33: 440–459. https://doi.org/10.1007/s00344-013-9362-4.

    Article  CAS  Google Scholar 

  • Castro, S.G.Q., J. Rossi Neto, O.T. Kölln, B.M.M.N. Borges, and H.C.J. Franco. 2019. Decision-making on the optimum timing for nitrogen fertilization on sugarcane ratoon. Scientia Agricola 76 (3): 237–242. https://doi.org/10.1590/1678-992X-2017-0365.

    Article  Google Scholar 

  • Cavalcanti, F.J.A. 2008. Recomendações de Adubação para o Estado de Pernambuco, 2nd ed., 198. Recife: Instituto Agronômico de Pernambuco–IPA.

    Google Scholar 

  • Cury, T.N., I.C. Maria, and D. Bolonhezi. 2014. Biomassa radicular da cultura de cana-de-açúcar em sistema convencional e plantio direto com e sem calcário [Sugarcane root biomass in no-tillage and conventional systems with and without liming]. Revista Brasileira De Ciência Do Solo 38 (6): 1929–1938. https://doi.org/10.1590/S0100-06832014000600027.

    Article  Google Scholar 

  • Dobbelaere, S., A. Croonenborghs, A. Thys, A.V. Broek, and J. Vanderleyden. 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant and Soil 212: 153–162. https://doi.org/10.1023/A:1004658000815.

    Article  Google Scholar 

  • Dong, M., Z. Yang, G. Cheng, L. Peng, Q. Xu, and J. Xu. 2019. Diversity of the bacterial microbiome in the roots of four Saccharum species: S. spontaneum, S. robustum, S. barberi, and S. officinarum. Frontiers in Microbiology 9: 267. https://doi.org/10.3389/fmicb.2018.00267.

    Article  Google Scholar 

  • FAO–Food and Agriculture Organization–FAOSTAT–Food and agriculture data–Rankings–Countries by commodity–Sugarcane. http://www.fao.org/faostat/en/#rankings/countries_by_commodity. Accessed 12 Feb 2021.

  • Faroni, C.E., and P.C.O. Trivelin. 2006. Quantificação de raízes metabolicamente ativas na cana-de-açúcar. [Quantification of metabolically active roots in sugarcane]. Pesquisa Agropecuária Brasileira 41 (6): 1007–1013. https://doi.org/10.1590/S0100-204X2006000600017.

    Article  Google Scholar 

  • Fortes, C., P.C.O. Trivelin, A.C. Vitti, R. Otto, H.C.J. Franco, and C.E. Faroni. 2013. Stalk and sucrose yield in response to nitrogen fertilization of sugarcane under reduced tillage. Pesquisa Agropecuária Brasileira 48 (1): 88–96. https://doi.org/10.1590/S0100-204X2013000100012.

    Article  Google Scholar 

  • Franco, H.C.J., P.C.O. Trivelin, C.E. Faroni, A.C. Vitti, and R. Otto. 2011. Nitrogen in sugarcane derived from fertilizer under Brazilian field conditions. Field Crops Research 121 (1): 29–41. https://doi.org/10.1016/j.fcr.2010.11.011.

    Article  Google Scholar 

  • Gava, G.J.C., F.V. Scarpare, H. Cantarella, O.T. Kolln, S.T. Ruiz-Corrêa, A.B. Arlanch, and P.C.O. Trivelin. 2019. Nitrogen source contribution in sugarcane-inoculated plants with diazotrophic bacterias under urea-N fertigation management. Sugar Tech 21 (3): 462–470. https://doi.org/10.1007/s12355-018-0614-2.

    Article  CAS  Google Scholar 

  • Giehl, R.F.H., B.D. Gruber, and N. von Wirén. 2014. It’s time to make changes: Modulation of root system architecture by nutrient signals. Journal of Experimental Botany 65 (3): 769–778. https://doi.org/10.1093/jxb/ert421.

    Article  CAS  PubMed  Google Scholar 

  • Gírio, L.A.S., F.L.F. Dias, V.M. Reis, S. Urquiaga, N. Schultz, D. Bolonhezi, and M.A. Mutton. 2015. Bactérias promotoras de crescimento e adubação nitrogenada no crescimento inicial de cana-de-açúcar proveniente de mudas pré-brotadas [Plant growth-promoting bacteria and nitrogen fertilization effect on the initial growth of sugarcane from pre-sprouted seedlings]. Pesquisa Agropecuária Brasileira 50 (1): 33–43. https://doi.org/10.1590/S0100-204X2015000100004.

    Article  Google Scholar 

  • Gosal, S.K., A. Kalia, S.K. Uppal, R. Kumar, S.S. Walia, K. Singh, and H. Singh. 2012. Assessing the benefits of Azotobacter bacterization in sugarcane: A field appaisal. Sugar Tech 14: 61–67. https://doi.org/10.1007/s12355-011-0131-z.

    Article  CAS  Google Scholar 

  • Gustafsson, J.P., and C. Tiberg. 2015. Molybdenum binding to soil constituents in acid soils: An XAS and modelling study. Chemical Geology 417: 279–288. https://doi.org/10.1016/j.chemgeo.2015.10.016.

    Article  CAS  Google Scholar 

  • Imran, M., C. Hu, S. Hussain, M.S. Rana, M. Riaz, J. Afzal, O. Aziz, A.M. Elyamine, M.A.F. Ismael, and X. Sun. 2019. Molybdenum-induced effects on photosynthetic efficacy of winter wheat (Triticum aestivum L.) under different nitrogen sources are associated with nitrogen assimilation. Plant Physiology and Biochemistry 141: 154–163. https://doi.org/10.1016/j.plaphy.2019.05.024.

    Article  CAS  PubMed  Google Scholar 

  • Imran, M., X. Sun, S. Hussain, U. Ali, M.S. Rana, F. Rasul, S. Shaukat, and C. Hu. 2020. Molybdenum application regulates oxidative stress tolerance in winter wheat under different nitrogen sources. Journal of Soil Science and Plant Nutrition 20: 1827–1837. https://doi.org/10.1007/s42729-020-00254-6.

    Article  CAS  Google Scholar 

  • IUSS Working Group. 2015. WRB-World Reference Base for Soil Resources 2014, update 201. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

  • Jacoby, R., M. Peukert, A. Succurro, A. Koprivova, and S. Kopriva. 2017. The role of soil microorganisms in plant mineral nutrition–current knowledge and future directions. Frontiers in Plant Science 8: 1617. https://doi.org/10.3389/fpls.2017.01617.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koçar, G., and N. Civas. 2013. An overview of biofuels from energy crops: Current status and future prospects. Renewable and Sustainable Energy Reviews 28: 900–916. https://doi.org/10.1016/j.rser.2013.08.022.

    Article  CAS  Google Scholar 

  • Lima, D.R.M., I.B. Santos, J.T.C. Oliveira, J.G. Barbosa, W.P.S. Diniz, A.R.B. Farias, F.J. Freire, and J. Kuklinsky-Sobral. 2018. Tolerance of potentially diazotrophic bacteria to adverse environmental conditions and plant growth-promotion in sugarcane. Archives of Agronomy and Soil Science 64 (11): 1534–1548. https://doi.org/10.1080/03650340.2018.1443212.

    Article  Google Scholar 

  • Lima, D.R.M., I.B. Santos, J.T.C. Oliveira, D.P. Costa, J.V.J. Queiroz, E.M. Romagnoli, F.D. Andreote, F.J. Freire, and J. Kuklinsky-Sobral. 2021. Genetic diversity of N-fixing and plant growth-promoting bacterial community in different sugarcane genotypes, association habitat and phenological phase of the crop. Archives of Microbiology 203 (3): 1089–1105. https://doi.org/10.1007/s00203-020-02103-7.

    Article  CAS  PubMed  Google Scholar 

  • Lopes, L.D., M.C.P. Silva, and F.D. Andreote. 2016. Bacterial abilities and adaptation toward the rhizosphere colonization. Frontiers in Microbiology 7: 1341. https://doi.org/10.3389/fmicb.2016.01341.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, J., Q. Bei, X. Wang, P. Lan, G. Liu, X. Lin, Q. Liu, Z. Lin, B. Liu, Y. Zhang, H. Jin, T. Hu, J. Zhu, and Z. Xie. 2019. Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system. Science of the Total Environment 649: 686–694. https://doi.org/10.1016/j.scitotenv.2018.08.318.

    Article  CAS  PubMed  Google Scholar 

  • Manochio, C., B.R. Andrade, R.P. Rodrigues, and B.S. Moraes. 2017. Ethanol from biomass: A comparative overview. Renewable and Sustainable Energy Reviews 80: 743–755. https://doi.org/10.1016/j.rser.2017.05.063.

    Article  Google Scholar 

  • Mellis, E.V., J.A. Quaggio, G.R.G. Becari, L.A.J. Teixeira, H. Cantarella, and F.L.F. Dias. 2016. Effect of micronutrients soil supplementation on sugarcane in different production environments: Cane plant cycle. Agronomy Journal 108 (5): 2060–2070. https://doi.org/10.2134/agronj2015.0563.

    Article  CAS  Google Scholar 

  • Mohite, B. 2013. Isolation and characterization of índole acetic acid (IAA) producing bactéria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition 13 (3): 638–649. https://doi.org/10.4067/S0718-95162013005000051.

    Article  Google Scholar 

  • Moretti, L.G., C.A.C. Crusciol, E.E. Kuramae, J.W. Bossolani, A. Moreira, N.R. Costa, C.J. Alves, I.M. Pascoaloto, A.B.L. Rondina, and M. Hungria. 2020. Effects of growth-promoting bacteria on soybean root activity, plant development and yield. Agronomy Journal 112 (1): 418–428. https://doi.org/10.1002/agj2.20010.

    Article  Google Scholar 

  • Oliveira, E.C.A., C.J.C. Gava, P.C.O. Trivelin, R. Otto, and H.C.J. Franco. 2013. Determining a critical nitrogen dilution curve for sugarcane. Journal of Plant Nutrition and Soil Science 176 (5): 712–723. https://doi.org/10.1002/jpln.201200133.

    Article  CAS  Google Scholar 

  • Oliveira, R.I., M.R.F.A. Medeiros, C.S. Freire, F.J. Freire, D.E. Simões Neto, and E.C.A. Oliveira. 2016. Nutrient partitioning and nutritional requirement in sugarcane. Australian Journal of Crop Science 10: 69–75.

    Google Scholar 

  • Oliver, R., and M.A. Silva. 2018. Interaction between diazotrophic bacteria and N-fertilizer doses on sugarcane crop. Journal of Plant Nutrition 41 (6): 722–736. https://doi.org/10.1080/01904167.2018.1425436.

    Article  CAS  Google Scholar 

  • Otto, R., H.C.J. Franco, C.E. Faroni, A.C. Vitti, and P.C.O. Trivelin. 2009. Fitomassa de raízes e da parte aérea da cana-de-açúcar relacionada à adubação nitrogenada de plantio. [Sugarcane root and shoot phytomass related to nitrogen fertilization at planting]. Pesquisa Agropecuária Brasileira 44 (4): 398–405. https://doi.org/10.1590/s0100-204x2009000400010.

    Article  Google Scholar 

  • Otto, R., S.A.Q. Castro, E. Mariano, S.G.Q. Castro, H.C.J. Franco, and P.C.O. Trivelin. 2016. Nitrogen use efficiency for sugarcane-biofuel production: What is next? Bioenergy Research 9: 1272–1289. https://doi.org/10.1007/s12155-016-9763-x.

    Article  CAS  Google Scholar 

  • Pedula, R.O., N. Schulz, R.C. Monteiro, W. Pereira, A.P. Araújo, S. Urquiaga, and V.M. Reis. 2016. Growth analysis of sugarcane inoculated with diazotrophic bacteria and nitrogen fertilization. African Journal of Agricultural Research 11 (30): 2786–2795. https://doi.org/10.5897/AJAR2016.11141.

    Article  Google Scholar 

  • Peng, T., Y. Xu, and Y. Zhang. 2018. Comparative genomics of molybdenum utilization in prokaryotes and eukaryotes. BMC Genomics 19: 691. https://doi.org/10.1186/s12864-018-5068-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira, W., R.P. Oliveira, A. Pereira, J.S. Sousa, N. Schultz, S. Urquiaga, and V.M. Reis. 2021. Nitrogen acquisition and 15N-fertiliser recovery efficiency of sugarcane cultivar RB92579 inoculated with five diazotrophs. Nutrient Cycling in Agroecosystems 119: 37–50. https://doi.org/10.1007/s10705-020-10100-x.

    Article  CAS  Google Scholar 

  • Pirog, T.P., G.O. Iutynska, N.O. Leonova, K.A. Beregova, and T.A. Shevchuk. 2018. Microbial synthesis of phytohormones. Biotechnologia Acta 11 (1): 5–24. https://doi.org/10.15407/biotech11.01.005.

    Article  Google Scholar 

  • RIDESA-Rede Interuniversitária para o desenvolvimento do Setor Sucroenergético. Censo varietal Brasil 2017/18. [Interuniversity Network for the Development of the Sugar-Energy Sector. Varietal census Brazil 2017/18]. https://www.ridesa.com.br/censo-varietal. Accessed 12 Feb 2021

  • Robinson, N., A. Fletcher, A. Whan, C. Critchley, N. von Wirén, P. Lakshmanan, and S. Schmidt. 2007. Sugarcane genotypes differ in internal nitrogen use efficiency. Functional Plant Biology 34 (12): 1122–1129. https://doi.org/10.1071/FP07183.

    Article  CAS  Google Scholar 

  • Rocha, I.T.M., F.J. Freire, E.C.A. Oliveira, E.R. Souza, M.B.G.S. Freire, D.E. Simões Neto, and A.V. Silva. 2019. Salt effect of potassium fertilizer on productivity and technological quality of sugarcane. Australian Journal of Crop Science 13: 1552–1560. https://doi.org/10.21475/ajcs.19.13.09.p1919.

    Article  CAS  Google Scholar 

  • Santana, A.C.A., E.C.A. Oliveira, V.S.G. Silva, R.L. Santos, M.A. Silva, and F.J. Freire. 2020. Critical nitrogen dilution curves and productivity assessments for plant cane. Revista Brasileira De Engenharia Agrícola e Ambiental 24 (4): 244–251. https://doi.org/10.1590/1807-1929/agriambi.v24n4p244-251.

    Article  Google Scholar 

  • Santos, S.G., F.S. Ribeiro, C.S. Fonseca, W. Pereira, L.A. Santos, and V.M. Reis. 2017. Development and nitrate reductase activity of sugarcane inoculated with five diazotrophic strains. Archives of Microbiology 199: 863–873. https://doi.org/10.1007/s00203-017-1357-2.

    Article  CAS  PubMed  Google Scholar 

  • Santos, R.L., F.J. Freire, E.C.A. Oliveira, J.A. Barbosa, M.J.A. Moura, N.R.C. Lopes, L.G.A.F.C. Costa, V.H.F. Guedes, D.M.A. Oliveira, and M.B.C. Santos. 2018a. Sampling of sugarcane leaves in field experiments to determine the activity of nitrate reductase. Communications in Soil Science and Plant Analysis 49 (1): 76–87. https://doi.org/10.1080/00103624.2017.1421648.

    Article  CAS  Google Scholar 

  • Santos, R.L., F.J. Freire, E.C.A. Oliveira, D.E. Simões Neto, M.R.F.A. Medeiros, P.C. Bezerra, M.J.A. Moura, J.A. Barbosa, N.R.C. Lopes, and N.L. Santos. 2018b. Productivity and technological quality of sugarcane under fertilization of nitrogen and molybdenum. Journal of Soil Science and Plant Nutrition 18 (4): 1002–1020. https://doi.org/10.4067/S0718-95162018005002901.

    Article  Google Scholar 

  • Santos, R.L., F.J. Freire, E.C.A. Oliveira, M.B.G.S. Freire, J.B. West, J.A. Barbosa, M.J.A. Moura, and P.C. Bezerra. 2019a. Nitrate reductase activity and nitrogen and biomass accumulation in sugarcane under molybdenum and nitrogen fertilization. Revista Brasileira De Ciência Do Solo 43: e0180171. https://doi.org/10.1590/18069657rbcs20180171.

    Article  CAS  Google Scholar 

  • Santos, R.L., F.J. Freire, E.C.A. Oliveira, P.C.O. Trivelin, M.B.G.S. Freire, P.C. Bezerra, R.I. Oliveira, and M.B.C. Santos. 2019b. Changes in biological nitrogen fixation and natural-abundance N isotopes of sugarcane under molybdenum fertilization. Sugar Tech 21 (6): 925–935. https://doi.org/10.1007/s12355-019-00717-w.

    Article  CAS  Google Scholar 

  • Santos, R.M., P.A.E. Diaz, L.L.B. Lobo, and E.C. Rigobelo. 2020a. Use of plant growth-promoting rhizobacteria in maize and sugarcane: Characteristics and applications. Frontiers in Sustainable Food Systems 4: 136. https://doi.org/10.3389/fsufs.2020.00136.

    Article  Google Scholar 

  • Santos, S.G., F.R. Silva, G.C. Alves, L.A. Santos, and V.M. Reis. 2020b. Inoculation with five diazotrophs alters nitrogen metabolism during the initial growth of sugarcane varieties with contrasting responses to added nitrogen. Plant and Soil 451 (2): 25–44. https://doi.org/10.1007/s11104-019-04101-1.

    Article  CAS  Google Scholar 

  • Schultz, N., J.A. Silva, J.S. Sousa, R.C. Monteiro, R.P. Oliveira, V.A. Chaves, W. Pereira, M.F. Silva, J.I. Baldani, R.M. Boddey, et al. 2014. Inoculation of sugarcane with diazotrophic bacteria. Revista Brasileira De Ciência Do Solo 38 (2): 407–414. https://doi.org/10.1590/S0100-06832014000200005.

    Article  Google Scholar 

  • Schultz, N., W. Pereira, V.M. Reis, and S.S. Urquiaga. 2016. Produtividade e diluição isotópica de 15N em cana-de-açúcar inoculada com bactérias diazotróficas [Productivity and 15N isotope dilution of sugarcane inoculated with diazotrophic bacteria]. Pesquisa Agropecuária Brasileira 51 (9): 1594–1601. https://doi.org/10.1590/s0100-204x2016000900059.

    Article  Google Scholar 

  • Schultz, N., W. Pereira, P.A. Silva, J.I. Baldani, R.M. Boddey, B.J.R. Alves, S. Urquiaga, and V.M. Reis. 2017. Yield of sugarcane varieties and their sugar quality grown in different soil types and inoculated with a diazotrophic bacteria consortium. Plant Production Science 20 (4): 366–374. https://doi.org/10.1080/1343943X.2017.1374869.

    Article  CAS  Google Scholar 

  • Silva, F.C. 2009. Manual de Análises Químicas de Solos, Plantas e Fertilizantes. Brasília: Embrapa.

    Google Scholar 

  • Silva, P.R.A., M.S. Vidal, C.P. Soares, V. Polese, M.Z. Tadra-Sfeir, E.M. Souza, J.L. Simões-Araújo, and J.I. Baldani. 2018. Sugarcane apoplast fluid modulates the global transcriptional profile of the diazotrophic bacteria Paraburkholderia tropica strain Ppe8. PLoS ONE 13 (12): e0207863. https://doi.org/10.1371/journal.pone.0207863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, M.A. 2020. Adubação molíbdica e bactérias promotoras de crescimento na nutrição nitrogenada da cana-de-açúcar. [Molybidic fertilization and growth-promoting bacteria on sugarcane nitrogen nutrition]. Doctoral Thesis, Universidade Federal Rural de Pernambuco, Brasil, p 234.

  • Simões Neto, D.E., A.C. Oliveira, F.J. Freire, M.B.G. Freire, E.C.A. Oliveira, and A.T. Rocha. 2015. Adubação fosfatada para cana-de-açúcar em solos representativos para o cultivo da espécie no Nordeste brasileiro. [Phosphorus fertilization for sugarcane in representative soils for cultivating this species in the Brazilian Northeast]. Pesquisa Agropecuária Brasileira 50 (1): 73–81. https://doi.org/10.1590/S0100-204X2015000100008.

    Article  Google Scholar 

  • Smith, D.M., N.G. Inman-bamber, and P.J. Thorburn. 2005. Growth and function of the sugarcane root system. Field Crops Research 92 (2–3): 169–183. https://doi.org/10.1016/j.fcr.2005.01.017.

    Article  Google Scholar 

  • Stolf, R. 1986. Metodologia de avaliação de falhas nas linhas de cana-de-açúcar. [Methodology for the evaluation of failures in the sugarcane lines]. STAB 4 (6): 22–36.

    Google Scholar 

  • Trivelin, P.C.O., A.C. Vitti, M.W. Oliveira, G.J.C. Gava, and G.A. Sarriés. 2002. Utilização de nitrogênio e produtividade da cana-de-açúcar (cana-planta) em solo arenoso com incorporação de resíduos da cultura. [Nitrogen utilization and sugarcane (plant cane) productivity in sandy soil with incorporation of crop residues]. Revista Brasileira De Ciência Do Solo 26 (3): 637–646. https://doi.org/10.1590/s0100-06832002000300008.

    Article  Google Scholar 

  • Vale, D.W., R.M. Prado, C.C. Avalhães, and R.H. Hojo. 2011. Omissão de macronutrientes na nutrição e no crescimento da cana-de-açúcar cultivada em solução nutritive. [Omission of macronutrients in the nutrition and growth of sugarcane grown in nutrient solution]. Revista Brasileira Ciências Agrárias 6 (2): 189–196. https://doi.org/10.5039/agraria.v6i2a550.

    Article  Google Scholar 

  • Verbon, E.H., and L.M. Liberman. 2016. Beneficial microbes affect endogenous mechanisms controlling root development. Trends in Plant Science 21 (3): 218–229. https://doi.org/10.1016/j.tplants.2016.01.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viana, R.S., B.R.A. Moreira, L.A.M. Lisboa, R. Sandu Junior, T.A.R. Nogueira, P.A.M. Figueiredo, M.C.M. Teixeira Filho, and S.B. Ramos. 2019. Morphological changes in sugarcane crop induced by the plant growth-promoting bacterium Azospirillum brasilense. Sugar Tech 22: 241–249. https://doi.org/10.1007/s12355-019-00773-2.

    Article  Google Scholar 

  • Vieira, R.C. 2015. Doses e formas de aplicação de molibdênio em cana-de-açúcar. [Doses and forms of molybdenum application in sugarcane]. [Master's thesis]. Campinas (SP): Instituto Agronômico de Campinas.

  • Vieira-Megda, M.X., E. Mariano, J.M. Leite, H.C.J. Franco, A.C. Vitti, M.M. Megda, A.S. Khan, R.L. Mulvaney, and P.C.O. Trivelin. 2015. Contribution of fertilizer nitrogen to the total nitrogen extracted by sugarcane under Brazilian field conditions. Nutrient Cycling in Agroecosystems 101 (2): 241–257. https://doi.org/10.1007/s10705-015-9676-7.

    Article  CAS  Google Scholar 

  • Wanderley, L.R.S., E.C.A. Oliveira, F.J. Freire, D.E. Simões Neto, and R.L. Santos. 2021. Nutritional requirement by irrigated Brazilian sugarcane varieties. Sugar Tech 23: 762–775. https://doi.org/10.1007/s12355-020-00921-z.

    Article  CAS  Google Scholar 

  • Yeoh, Y.K., C. Paungfoo-Lonhienne, P.G. Dennis, N. Robinson, M.A. Ragan, S. Schmidt, and P. Hugenholtz. 2015. The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environmental Microbiology 18 (5): 1338–1351. https://doi.org/10.1111/1462-2920.12925.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank to the UFRPE, IFPE and IPA for laboratory facilities provision. We also would like thank to Miriri Alimentos e Bioenergia mill for the logistic and operational support to field activities.

Funding

This work was supported by the Brazilian institutions CNPq under Grant number 426747/2016-0; FACEPE under Grant number 0430-5.01/14; and AGRISUS under Grant number 2858/19.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AMS Lima, VRS Martins and LB Silva. The first draft of the manuscript was written by AMS Lima and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amanda Michele Santos de Lima.

Ethics declarations

Conflicts of interest

No potential conflict of interest was reported by the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, A.M.S., de Oliveira, E.C.A., Martins, V.R.S. et al. Integrated Application of Nitrogen, Molybdenum and Plant Growth-Promoting Rhizobacterium can Enhance the Sugarcane Growth. Sugar Tech 24, 1748–1765 (2022). https://doi.org/10.1007/s12355-022-01133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-022-01133-3

Keywords

Navigation