Skip to main content
Log in

Xylooligosaccharide Production from Sugarcane Bagasse using Recombinant Endoxylanase of Bacillus Halodurans

  • S.I. : Diversification of Sugar Crops for Value Addition
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Xylooligosaccharides (XOSs) can be manufactured from sugarcane bagasse as a value-added product in the sugar industry. To produce XOS, xylan was extracted from sugarcane bagasse by using sodium hydroxide, precipitated in ethanol, and subjected to enzymatic hydrolysis by using endoxylanase to form xylooligomers. We constructed a recombinant strain of Escherichia coli harbouring the recombinant plasmid containing a gene encoding endoxylanase modified from GH10 xylanase of alkaliphilic Bacillus halodurans BCRC 910,501. Results from the flask culture showed that in terms of activity, 80.43 ± 6.36% of recombinant proteins were secreted to the medium under the induction of 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) for 18 h at 30 °C. The activity concentration in the medium was 20.04 ± 4.11 U/mL. When this strain was fed-batch cultivated to high cell density in a bench-top fermenter, 89.13 ± 0.66% of the recombinant enzymes were found in the medium, and the active protein concentration was 45.9 ± 7.32 U/mL. Thus, the recombinant E. coli has the potential for large-scale production of endoxylanase. A 24-h enzyme reaction yielded 44.91% (w/w) of XOS from xylan. Among the total soluble oligomers in the product, 40.6% (w/w) were xylobiose and xylotriose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from the endoxylanase GH10 of B. halodurans BCRC 910,501

Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aachary, A.A., and S.G. Prapulla. 2009. Value addition to corncob: Production and characterization of xylooligosaccharides from alkali pretreated ligninsaccharide complex using Aspergillus oryzae MTCC 5154. Bioresource Technology 100: 991–995.

    Article  CAS  Google Scholar 

  • Aachary, A.A., and S.G. Prapulla. 2011. Xylooligosaccharides (XOS) as an emerging prebiotic: Microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Comprehensive Reviews in Food Science and Food Safety 10: 2–16. https://doi.org/10.1111/j.1541-4337.2010.00135.x.

    Article  CAS  Google Scholar 

  • Ai, Z., Z. Jiang, L. Li, W. Deng, I. Kusakabe, and H. Li. 2005. Immobilization of Streptomyces olivaceoviridis E-86 xylanase on Eudragit S-100 for xylo-oligosaccharide production. Process Biochemistry 40: 2707–2714.

    Article  CAS  Google Scholar 

  • Alonso, J.L., H. Dominguez, G. Garrote, J.C. Parajo, and M.J. Vazquez. 2003. Xylo-oligosaccharides: Properties and production technologies. Electronic Journal of Environmental, Agricultural and Food Chemistry 2: 230–232.

    Google Scholar 

  • Bhatia, L., and S. Johri. 2016. Optimization of simultaneous saccharification and fermentation parameters for sustainable ethanol production from sugarcane bagasse by Pachysolen tannophilus MTCC 1077. Sugar Tech 18: 457–467.

    Article  CAS  Google Scholar 

  • Bian, J., F. Peng, X.-P. Peng, P. Peng, F. Xu, and R.-C. Sun. 2013. Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresource Technology 127: 236–241.

    Article  CAS  Google Scholar 

  • Boonchuay, P., C. Techapun, P. Seesuriyachan, and T. Chaiyaso. 2014. Production of xylooligosaccharides from corncob using a crude thermostable endo-xylanase from Streptomyces thermovulgaris TISTR1948 and prebiotic properties. Food Science and Biotechnology 23: 1515–1523.

    Article  CAS  Google Scholar 

  • Bragatto, J., F. Segato, and F.M. Squina. 2013. Production of xylooligosaccharides (XOS) from delignified sugarcane bagasse by peroxide-HAc process using recombinant xylanase from Bacillus subtilis. Industrial Crops and Products 51: 123–129.

    Article  CAS  Google Scholar 

  • Brienzo, M., W. Carvalho, and A.M.F. Milagres. 2010. Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus. Applied Biochemistry and Biotechnology 162: 1195–1205.

    Article  CAS  Google Scholar 

  • Brienzo, M., A.F.A. Carvalho, F.C. de Figueiredo, and Neto P. de Oliva. 2016. Sugarcane bagasse hemicellulose properties extraction technologies and xylooligosaccharides production In food waste: Practices management and challenges, 155–188. New York: Nova Science Publishers.

    Google Scholar 

  • Chang, P., W.-S. Tsai, C.-L. Tsai, and M.-J. Tzeng. 2004. Cloning and characterization of two thermostable xylanases from an alkaliphilic Bacillus firmus. Biochemical and Biophysical Research Communications 319: 1017–1025.

    Article  CAS  Google Scholar 

  • Chapla, D., P. Pandit, and A. Shah. 2012. Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresource Technology 115: 215–221.

    Article  CAS  Google Scholar 

  • Hu, J., and J.N. Saddler. 2018. Why does GH10 xylanase have better performance than GH11 xylanase for the deconstruction of pretreated biomass? Biomass & Bioenergy 110: 13–16.

    Article  CAS  Google Scholar 

  • Jayapal, N., A.K. Samanta, A.P. Kolte, S. Senani, M. Sridhar, K.P. Suresh, and K.T. Sampath. 2013. Value addition to sugarcane bagasse: Xylan extraction and its process optimization for xylooligosaccharides production. Industrial Crops and Products 42: 14–24.

    Article  CAS  Google Scholar 

  • Kapoor, M., and R.C. Kuhad. 2007. Immobilization of xylanase from Bacillus pumilus strain MK001 and its application in production of xylo-oligosaccharides. Applied Biochemistry and Biotechnology 142: 125–138.

    Article  CAS  Google Scholar 

  • Kaur, R., S.K. Uppal, and P. Sharma. 2019. Production of xylooligosaccharides from sugarcane bagasse and evaluation of their prebiotic potency in vitro. Waste and Biomass Valorization 10: 2627–2635.

    Article  CAS  Google Scholar 

  • Lin, Y.-S., M.-J. Tseng, and W.-C. Lee. 2011. Production of xylooligosaccharides using immobilized endo-xylanase of Bacillus halodurans. Process Biochemistry 46: 2117–2121.

    Article  CAS  Google Scholar 

  • Maalej-Achouri, I., M. Guerfali, A. Gargouri, and H. Belghith. 2009. Production of xylo-oligosaccharides from agro-industrial residues using immobilized Talaromyces thermophilus xylanase. Journal of Molecular Catalysis b: Enzymatic 59: 145–152.

    Article  CAS  Google Scholar 

  • Mamo, G., R. Hatti-Kual, and B. Mattiasson. 2006. A thermostable alkaline active endo-β-1,4-xylanase from Bacillus halodurans S7: Purification and characterization. Enzyme and Microbial Technology 39: 1492–1498.

    Article  CAS  Google Scholar 

  • Mandelli, F., L.B. Brenelli, R.F. Almeida, R. Goldbeck, L.D. Wolf, Z.B. Hoffmam, R. Ruller, G.J.M. Rocha, A.Z. Mercadante, and F.M. Squina. 2014. Simultaneous production of xylooligosaccharides and antioxidant compounds from sugarcane bagasse via enzymatic hydrolysis. Industrial Crops and Products 52: 770–775.

    Article  CAS  Google Scholar 

  • Masarin, F., D.B. Gurpilhares, D.C. Baffa, M.H. Barbosa, W. Carvalho, A. Ferraz, and A.M. Milagres. 2011. Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content. Biotechnology for Biofuels 4: 55.

    Article  CAS  Google Scholar 

  • Nascimento, V.M., A. Manrich, P.W. Tardioli, R. de Campos Giordano, G.J. de Moraes Rocha, and R.D.L.C. Giordano. 2016. Alkaline pretreatment for practicable production of ethanol and xylooligosaccharides. Bioethanol 2: 112–125.

    Article  Google Scholar 

  • Rashad, M.M., A.E. Mahmoud, M.U. Nooman, H.A. Mahmoud, A.E.M. El-Torky, and A.T. Keshta. 2016. Production of antioxidant xylooligosaccharides from lignocellulosic materials using Bacillus amyloliquifaciens NRRL B-14393 xylanase. Journal of Applied Pharmaceutical Science 6: 30–36.

    Article  CAS  Google Scholar 

  • Reddy, S.S., and C. Krishnan. 2016. Production of high-pure xylooligosaccharides from sugarcane bagasse using crude β-xylosidase-free xylanase of Bacillus subtilis KCX006 and their bifidogenic function. LWT - Food Science and Technology 65: 237–245.

    Article  CAS  Google Scholar 

  • Safirzadeh, S., M. Chorom, R. Karimi, A. Ariz, H.R. Behravan, and M. Fadami. 2017. Effects of alkaline pretreatments on chemical composition of sugarcane bagasse for easy degradation in soil. Sugar Tech 19: 89–94.

    Article  CAS  Google Scholar 

  • Saleh, S.H., S.N.M.D. Shah, K.A. Khalil, and A. Bujang. 2016. Xylooligosaccharides production from oil palm frond by Trichoderma longibrachiatum xylanase. Malaysian Journal of Analytical Sciences 20: 525–530.

    Article  Google Scholar 

  • Salupia, W., Y. Yopib, and A. Meryandinic. 2015. Xylanase activity of Streptomyces violascences BF 3.10 on xylan corncobs and its xylooligosaccharide production. Media Peternakan 38: 27–33.

    Article  Google Scholar 

  • Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker. 2012. Determination of structural carbohydrates and lignin in biomass: Laboratory Analytical Procedure (LAP) (Version 08–03–2012). https://www.nrel.gov/docs/gen/fy13/42618.pdf. Accessed 12 December 2021.

  • Sporck, D., F.A.M. Reinoso, J. Rencoret, A. Gutiérrez, J.C. del Rio, A. Ferraz, and A.M.F. Milagres. 2017. Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches. Biotechnology for Biofuels 10: 296.

    Article  Google Scholar 

  • Sun, M.Z., H.C. Zheng, L.C. Meng, J.S. Sun, H. Song, Y.J. Bao, H.S. Pei, Z. Yan, X.Q. Zhang, J.S. Zhang, Y.H. Liu, and F.P. Lu. 2015. Direct cloning expression of a thermostable xylanase gene from the metagenomic DNA of cow dung compost and enzymatic production of xylooligosaccharides from corncob. Biotechnology Letters 37: 1877–1886.

    Article  CAS  Google Scholar 

  • Takami, H., K. Nakasone, Y. Takaki, G. Maeno, R. Sasaki, N. Masui, F. Fuji, C. Hirama, Y. Nakamura, N. Ogasawara, S. Kuhara, and K. Horikoshi. 2000. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Research 28: 4317–4331.

    Article  CAS  Google Scholar 

  • Tanaka, M., T. Hujioka, and R. Mitsui. 2009. Continuous production of xylooligosaccharides from xylan by crude enzyme derived from Eupenicillium javanicum. Bulletin of the Okayama University of Science 45: 39–43.

    Google Scholar 

  • Teng, C., Q. Yan, Z. Jiang, G. Fan, and B. Shi. 2010. Production of xylooligosaccharides from the steam explosion liquor of corncobs coupled with enzymatic hydrolysis using a thermostable xylanase. Bioresource Technology 101: 7679–7682.

    Article  CAS  Google Scholar 

  • Tseng, M.J., M.N. Yap, K. Ratanakhanokchaic, K.L. Kyuc, and S.T. Chen. 2002. Purification and characterization of two cellulase free xylanases from an alkaliphilic Bacillus firmus. Enzyme and Microbial Technology 30: 590–595.

    Article  CAS  Google Scholar 

  • Uppal, S.K., and R. Kaur. 2011. Hemicellulosic furfural production from sugarcane bagasse using different acids. Sugar Tech 13: 166–169.

    Article  CAS  Google Scholar 

  • Uppal, S.K., R. Kaur, and P. Sharma. 2011. Optimization of chemical pretreatment and acid saccharification for conversion of sugarcane bagasse to ethanol. Sugar Tech 13: 214–219.

    Article  CAS  Google Scholar 

  • Waterhouse, A., M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F.T. Heer, T.A.P. de Beer, C. Rempfer, L. Bordoli, R. Lepore, and T. Schwede. 2018. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research 46 (W1): W296–W303.

    Article  CAS  Google Scholar 

  • Xiong, K., Z.X. Yan, J.Y. Liu, P.G. Pei, L. Deng, L. Gao, and B.G. Sun. 2020. Inter domain interactions influence the substrate affinity and hydrolysis product specificity of xylanase from Streptomyces chartreusis L1105. Annals of Microbiology 70: 19.

    Article  CAS  Google Scholar 

  • Xu, L., L. Liu, S. Li, W. Zheng, Y. Cui, R. Liu, and W. Sun. 2019. Xylitol production by Candida tropicalis 31949 from sugarcane bagasse hydrolysate. Sugar Tech 21: 341–347.

    Article  CAS  Google Scholar 

  • Yang, C.H., S.F. Yang, and W.H. Liu. 2007. Production of xylooligosaccharides from xylans by extracellular xylanases from Thermobifida fusca. Journal of Agricultural and Food Chemistry 55: 3955–3959.

    Article  CAS  Google Scholar 

  • Yang, H.Y., K. Wang, X.L. Song, and F. Xu. 2011. Production of xylooligosaccharides by xylanase from Pichia stipitis based on xylan preparation from triploid Populas tomentosa. Bioresource Technology 102: 7171–7176.

    Article  CAS  Google Scholar 

  • Zheng, H.C., M.Z. Sun, L.C. Meng, H.S. Pei, X.Q. Zhang, Z. Yan, W.H. Zeng, J.S. Zhang, J.R. Hu, F.P. Lu, and J.S. Sun. 2014. Purification and characterization of a thermostable xylanase from Paenibacillus sp. NF1 and its application in xylooligosaccharides production. Journal of Microbiology and Biotechnology 24: 489–496.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Chien Lee.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, YH., Lee, WC., Krisomdee, K. et al. Xylooligosaccharide Production from Sugarcane Bagasse using Recombinant Endoxylanase of Bacillus Halodurans. Sugar Tech 24, 1029–1036 (2022). https://doi.org/10.1007/s12355-021-01096-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-021-01096-x

Keywords

Navigation