Skip to main content
Log in

Development and Diversification of Sugar Beet in Europe

  • S.I. : Diversification of Sugar Crops for Value Addition
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The sugar beet industry is rooted firmly in the trade and agricultural policies of the European powers during the nineteenth century. Disruption of sugar importation into Europe triggered staggering advancements around a home-grown sugar crop based on a newly developed technology out of Lower Silesia. This resulted in today’s well-established sugar beet industry that has since spread to all corners of the globe. Over the years, effort has been focused on the improvement of crop output, the reduction of processing costs and energy requirements, as well as the valorization of co-products. Today’s industry has started the evolution toward sustainability and a circular economy and is currently gaining momentum. Some high-level scientific research is being transferred to the industry as witness to this process, and it is one of the most exciting times to be part of this realm in Europe. Sugar beet is a near-optimal feedstock for numerous chemical and biochemical products. Not only does it contains an array of valuable and extractable compounds, but it can also serve as a raw material for virtually limitless transformations. This is largely due to accelerating developments in enzymatic, fermentation and synthetic biotechnologies. In a world where sustainability has become a key focus, the sugar beet will continue to play an ever-important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anon. 2020d. a Knoema statistics. Accessed June 2021. https://knoema.com/atlas/topics/Agriculture/Crops-Production-Quantity-tonnes/Sugar-beet-productionb USDA Foreign Agricultural Services European Sugar Production Annual Report. Accessed June 2021. https://www.fas.usda.gov/data/european-union-sugar-annual-0

  • Acan, Betul Gizem, Omer Said Toker, Tugba Aktar, Faruk Tamturk, Ibrahim Palabiyik, and Nevzat Konar. 2019. Using spray dried sugar beet molasses in ice cream as a novel bulking agent. International Journal of Food Science and Technology 55 (3): 1298–1310.

    Article  CAS  Google Scholar 

  • Adiletta, G., Paola Brachi, Evelina Rilanova, Alessio Crescitelli, Michele Miccio, and Natalia Kostryukova. 2019. A simplified biorefinery concept for the valorization of sugar beet pulp: ecofriendly isolation of pectin as a step preceding torrefaction. Waste and Biomass Valorization. 11: 2721–2733.

    Article  CAS  Google Scholar 

  • Alexandratos, N., and Bruinsma, J. 2012. World Agriculture Towards 2030/2050: The 2012 Revision. FAO Agricultural Development Economics Division. 146 pp.

  • Anon. 2020a. The Green Deal. Accessed June 2020. http://www.sustainablesugar.eu/.

  • Anon. 2020b. Horizon 2020. Accessed June 2020. http://www.sustainablesugar.eu/.

  • Anon. 2020c. Sustainable Sugar EU. Accessed June 2020. http://www.sustainablesugar.eu/.

  • Anon. 2020e. SAeB Energy. Accessed July 5, 2020. https://seabenergy.com/.

  • Anon. 2020f. Cosun Beet Company. Accessed July 5, 2020. https://www.cosunbeetcompany.com/.

  • Anon. 2020g. British Sugar. Accessed July 5, 2020. https://www.britishsugar.com/.

  • Anon. 1993. Decree of 11/22/93 relating to the Code of Good Agricultural Practice. Decree, Ministry for ecological and solidarity transformations, The Republic of France, Paris: 13 pp. Accessed June 2020. https://www.legifrance.gouv.fr/eli/arrete/1993/11/22/ENVE9320393A/jo/texte.

  • Anon. 2014. Opportunities for the fermentation-based chemical industry. An analysis of the market potential and competitiveness of North-West Europe. Deloitte Market Analysis, Amsterdam: 85 pp. Accessed June 2020. https://www2.deloitte.com/content/dam/Deloitte/nl/Documents/manufacturing/deloitte-nl-manufacturing-opportunities-for-the-fermentation-based-chemical-industry-2014.pdf.

  • Anon. 2019. Keep molasses for bioenergy and bio-based products. EU Beet Sugar Sustainability Partnership. Accessed June 2020. http://www.sustainablesugar.eu/molasses.

  • Aronson, M., and M. Budhos. 2010. In Sugar Changed the World, 1–166. New York: Clarion Books.

    Google Scholar 

  • Bach, Wilfrid. 1979. Impact of increasing atmospheric CO2 concentrations on global climate: Potential consequences and corrective measures. Environment International 2 (4–6): 215–228.

    Article  CAS  Google Scholar 

  • Baiano, A. 2014. Recovery of biomolecules from food wastes - a review. Molecules 19: 14821–14842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barranca, LP. 2014. Improved method for preparing concrete admixture by using vinasse prepared by distilling sugarcane molasses. China Patent CN102020431B. 09 17.

  • Bellou, Stamatia, Irene-Eva. Triantaphyllidou, Dimitra Aggeli, Ahmed Mohammed Elazzazy, Mohammed Nabih Baeshen, and George Aggelis. 2016. Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Current Opinion in Biotechnology 37: 24–35.

    Article  CAS  PubMed  Google Scholar 

  • Boland, Mike J., Allan N. Rae, Johan M. Vereijken, Miranda P.M.. Meuwisen, Arnout R.H.. Fischer, A.J.S. van Martinus, Shane M. Boekel, Harry Gruppen Rutherfurd, Paul J. Moughan, and Wouter H. Hendriks. 2013. The future supply of animal-derived protein for human consumption. Trends in Food Science & Technology 29: 62–73.

    Article  CAS  Google Scholar 

  • Borysiuk, P., I. Jenczyk-Tolloczko, R. Auriga, and M. Kordzikowski. 2019. Sugar beet pulp as raw material for particleboard production. Industrial Crops & Products 141: 111829.

    Article  Google Scholar 

  • Bosshart, Andreas, Nina Wagner, Lei Lei, Sven Panke, and Matthias Bechtold. 2016. Highly efficient production of rare sugars D-psicose and L-tagatose by two engineered D-tagatose epimerases. Biotechnology and Bioengineering 113 (2): 349–358.

    Article  CAS  PubMed  Google Scholar 

  • Brachi, Paola, Evelina Riianova, Michele Miccio, Francesco Miccio, Giovanna Ruoppolo, and Riccardo Chirone. 2017. Valorization of Sugar Beet Pulp via Torrefaction with a Focus on the Effect of the Preliminary Extraction of Pectins. Energy & Fuels 31 (9): 9595–9604.

    Article  CAS  Google Scholar 

  • Bregola, M. and Wong, E. 1998. Use of sugar beet pulp for making paper or cardboard. European Patent No EP0880616A1.

  • Brühns, M., P. Glavič, A.S. Jensen, M. Narodoslawsky, G. Pezzi, K. Urbaniec, and G. Vaccari. 2010. Research for a sustainable European sugar sector. Sugar Industry 135 (8): 487–495.

    Article  Google Scholar 

  • Castro-Aguirre, E., F. Iñiguez-Franco, H. Samsudin, X. Fang, and R. Auras. 2016. Poly(lactic acid) - Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews 107: 333–366.

    Article  CAS  PubMed  Google Scholar 

  • CEFIC 2020. The European Chemical Industry Council. Position Paper on the Chemical Strategy for Sustainability, accessed June 2021: https://cefic.org/the-chemical-industry-position-papers/

  • Chen, Mingshun, Hecheng Meng, Yi Zhao, Fuquan Chen, and Shujuan Yu. 2015. ‘Antioxidant and in vitro anticancer activities of phenolics I solated from sugar beet molasses.’ BMC Complementary & Alternative Medicine 15: Article No 313. Doi: https://doi.org/10.1186/s12906-015-0847-5.

  • Chen, Hao, Shuang Qiu, Jing Gan, Yan Liu, Qiaomei Zhu, and Lijun Yin. 2016. New insights into the functionality of protein to the emulsifying properties of sugar beet pectin. Food Hydrocolloids 57: 262–270.

    Article  CAS  Google Scholar 

  • Cherubini, Francesco. 2010. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management 51 (7): 1412–1421.

    Article  CAS  Google Scholar 

  • De Bruijn, J.M. 2012. The fascinating sweet world of sugar technology, never a dull moment. Sugar Industry 137 (11): 697–706.

    Article  Google Scholar 

  • de Oliveira, R.A., R. Schneider, B.H. Lunelli, C.E.V. Rossell, R.M. Filho, and J. Venus. 2020. A Simple Biorefinery Concept to Produce 2G-Lactic. Molecules 25 (2133): 17. https://doi.org/10.3390/molecules25092113.

    Article  CAS  Google Scholar 

  • Decloux, M. 2000. Literature survey on molasses exhaustion. SPRI Conference on Sugar Processing Research. Sugar Process Research Institute. 322–376.

  • Decloux, M., and A. Bories. 2001. Traitement et valorisation des vinasses : Problématique et synthèse des voies de valorisation étudiées et envisagées. Industries Alimentaires Et Agricoles 7 (8): 61–73.

    Google Scholar 

  • Delgado-Aguilar, Marc, Israel G. Tovar, Quim Tarrés, Manuel Alcalá, Maria A. Pèlach, and Pere Mutjé. 2015. Approaching a Low-Cost Production of Cellulose Nanofibers for Papermaking Applications. BioResources 10 (3): 5345–5355.

    Article  CAS  Google Scholar 

  • Díaz, Ana Belén, Claudia González, Cristina Marzo, Ildefonso Caro, and Ana Blandino. 2020. Feasibility of exhausted sugar beet pulp as raw material for lactic acid production. Journal of the Science of Food and Agriculture 100 (7): 3036–3045.

    Article  PubMed  CAS  Google Scholar 

  • Diwan, Batul, Piyush Parkhey, and Pratima Gupta. 2018. From agro-industrial wastes to single cell oils: a step towards prospective biorefinery. Folia Microbiologica 63: 547–568.

    Article  CAS  PubMed  Google Scholar 

  • Dominguez, Ana, Lígia. R. Rodrigues, Nelson Lima, and José A. Teixeira. 2014. An overview of the recent developments on fructooligosaccharide production and applications. Food and Bioprocess Technology 7 (2): 324–337.

    Article  CAS  Google Scholar 

  • Draycot, A.P. 2006. Sugar Beet, 1–29. Oxford: Blackwell Publishing.

    Google Scholar 

  • Durand, A., and D. Chereau. 1988. A new pilot reactor for solid-state fermentation: application to the protein enrichment of sugar beet pulp. Biotechnology and Bioengineering 31: 476–486.

    Article  CAS  PubMed  Google Scholar 

  • E4tech, RE-CORD and WUR. 2015. From the Sugar Platform to biofuels and biochemicals. Final Report, Brussels: European commission, 183 pp.

  • Eggleston, G. 2019. History of Sugar and Sweeteners. Vol. 1314, chap. 5 in Chemistry’s Role in Food Production and Sustainability: Past and Present, by Orna,M.V., Eggleston, G. and Bopp, A.F. ACS publications, Atlanta: 63–74.

  • El-Maghraby, H.F., A.A. Aly, and S.M. Naga. 2013. Utilization of sugar-beet industry by-products for the production of anorthite. InterCeram International Ceramic Review. 6: 426–428.

    Google Scholar 

  • Fahnestock, Stephen R., Zhongjie Yao, and Laura A. Bedzyk. 2000. Microbial production of spider silk proteins. Reviews in Molecular Biotechnology 74 (2): 105–119.

    Article  CAS  PubMed  Google Scholar 

  • Farinas, C.S. 2015. Developments in solid-state fermentation for the production of biomass degrading enzymes for the bioenergy sector. Renewable and Sustainable Energy Reviews 52: 179–188.

    Article  CAS  Google Scholar 

  • Fei, Houman, Abuduxikuer Abudureheman, and J. Kevin. Vessey. 2017. Improving a “Generation 1.5” biofuel feedstock crop: Colonization and growth enhancement of energy beet (Beta vulgare L. Beta 5833R) by inoculation with Gluconacetobacter spp. Biocatalysis and Agricultural Biotechnology 10: 247–255.

    Article  CAS  Google Scholar 

  • Fišerová, M., J. Gigac, and Š Boháček. 2007. Application of pre-treated sugar beet pulp in. Cellulose Chem. Technol. 41 (4–6): 285–291.

    Google Scholar 

  • Fišerová, M., J. Gigac, Š Boháček, and M. Rosenberg. 2008. Valuation of sugar beet pulp fibrous residues in paper. Listy Cukrovarnické a Řepařské 124 (11): 320–325.

    Google Scholar 

  • Ghanem, K.M. 1992. Single Cell Protein Production from Beet Pulp by Mixed Culture. Microbiología 8 (1): 39–43.

    CAS  PubMed  Google Scholar 

  • Ghanem, K.M., A.H. El-Refai, and M.A. El-Gazaerly. 1991. Protein-enriched feedstuff from beet pulp. World Journal of Microbiology and Biotechnology 7: 365–371.

    Article  CAS  PubMed  Google Scholar 

  • Gharieb, Mahmoud, and Alaa M. Rashad. 2020. An initial study of using sugar-beet waste as a cementitious material. Construction and Building Materials 250: 118843.

    Article  CAS  Google Scholar 

  • Gigac, J., M. Fišerová, and M. Rosenberg. 2008. Improvement of paper strength via surface application of sugar beet pectin. Chemical Papers 62 (5): 509–515.

    Article  CAS  Google Scholar 

  • Gigac, J., M. Fišerová, and S. Boháček. 2009. Valorisation of sugar beet pulp fibrous residues in paper manufacture. International Sugar Journal 111 (1321): 22–26.

    Google Scholar 

  • Grabarczyk, Robert, Krzysztof Urbaniec, Emmanuel Koukios, Robert Bakker, and Giuseppe Vaccari. 2011. Options of sugar beet pretreatment for hydrogen fermentation. Sugar Industrie 136 (12): 784–790.

    Article  CAS  Google Scholar 

  • Guy, C.L., J.L.A. Huber, and S.C. Huber. 1992. Sucrose phosphate synthase and sucrose accumulation at low temperatures. Plant Physiology 100: 502–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harveson, RM. 2020. History of Sugarbeets. Accessed July 5, 2020. https://cropwatch.unl.edu/history-sugarbeets.

  • Heidebrecht, Aniela, and Thomas Scheibel. 2013. Chapter four - recombinant production of spider silk proteins. Advances in Applied Microbiology 82: 115–153.

    Article  CAS  PubMed  Google Scholar 

  • Hickson, JL (ed). 1977. Sucrochemistry. ACS Symposium Series. Edited by Hickson JL. Vol. 41. Washington, DC: American Chemical Society. 381 pp.

  • Holmes, B. 2017. Throwaway culture: the truth about recycling. New Scientist. London. Issue: 3135.

  • Hongisto, H.J. 1977. Chromatographic separation of sugar solutions. International Sugar Journal 79 (100–104): 131–134.

    CAS  Google Scholar 

  • Honig, P. (ed) 1965. Principles of Sugar Technology. Vol III. Elsevier Publishing Company, Amsterdam. 3: 454-454.

  • Hough, L. 1990. Applications of the Chemistry of Sucrose. Zuckerind. 115 (8): 655–661.

    CAS  Google Scholar 

  • Hradil, J., and F. Švec. 1981. Inversion of sucrose in a continuous process with β-d-fructofuranosidase (invertase) immobilized on bead DEAHP-cellulose. Enzyme and Microbial Technology 3 (4): 336–340.

    Article  CAS  Google Scholar 

  • Iciek, J, S Wawro, and M Wojtczak. 2009. Alternative products from sugar beets. European Society for Sugar Technology. 103–107.

  • Jarosz, S., P. Sokołowska, and Ł Szy. 2020. Synthesis of fine chemicals with high added value from sucrose: Towards sucrose-based macrocycles. Tetrahedron Letters 61: 151888–151901.

    Article  CAS  Google Scholar 

  • Jensen, AS. 2016. Environmental and energy saving large pressurized bulk driers. The 20th International Drying Symposium (IDS 2016): 9 pp.

  • Johnsonn, Erin, Morrow, Matthew, Peacock, Steve and Kochergin, Vadim. 2019. Molasses desugarization in the U.S. beet sugar industry recent update. International Sugar Journal. 121(1449): 668–681.

  • Karboune, Salwa, Neeyal Appanah, Nastaran Khodaei, and Feng Tian. 2018. Enzymatic synthesis of fructooligosaccharides from sucrose by endo-inulinase-catalyzed transfructosylation reaction in biphasic systems. Process Biochemistry 69: 82–91.

    Article  CAS  Google Scholar 

  • Kelly, P. 1983. Sugar beet pulp - a review. Anita. Feed Sci. Technol. 8: 1–18.

    Article  Google Scholar 

  • Kelly, Joel A., Amber M. Shukaliak, Clement C. Cheung, Kevin E. Shopsowitz, Wadood Y. Hamad, and Mark J. MacLachlan. 2013. Responsive Photonic Hydrogels Based on Nanocrystalline Cellulose. Angewandte Chemie (International ed. in English). 52 (34): 8912–8916.

  • Khan, R. 1984. Chemistry and new uses of sucrose: how important? Pure & Appi. Chem. 56 (7): 833–844.

    Article  CAS  Google Scholar 

  • Khan R and Jones HF 1988. Sucrose chemistry: Its position as a raw material for the chemical industry. In: Chemistry and processing of Sugarbeet and Sugarcane: Proceedings of the Symposium on the Chemistry and Processing of sugarbeet and sugarcane. Eds Clarke MA and Godshall MA. Elsevier Science Publishers BV, Amsterdam. 367–388.

  • Koch, T.J., J. Venus, and M. Bruhn. 2014. Sugar beet syrups in lactic acid fermentation – Part I. Sugar Industry 139: 495–502.

    Article  Google Scholar 

  • Kotzamanidis, Ch., T. Roukas, and G. Skaracis. 2002. Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World Journal of Microbiology and Biotechnology 18: 441–448.

    Article  CAS  Google Scholar 

  • Kühnel, Stefan, Henk A. Schols, and Harry Gruppen. 2011. Aiming for the complete utilization of sugar-beet pulp: Examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion. Biotechnology for Biofuels 4 (14): 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lemieux, R.U., and G. Huber. 1953. A Chemical Synthesis of Sucrose. Journal of the American Chemical Society 75 (16): 4118.

    Article  CAS  Google Scholar 

  • Leroux, J., V. Langendorff, G. Schick, V. Vaishnav, and J. Mazoyer. 2003. Emulsion stabilizing properties of pectin. Food Hydrocolloids 17: 455–462.

    Article  CAS  Google Scholar 

  • Lichtenthaler, F.W., and S. Peters. 2004. Carbohydrates as green raw materials for the chemical industry. C. r. Chimie 7: 65–90.

    Article  CAS  Google Scholar 

  • Lilly, Malcolm D. 1994. Advances in biotransformation processes. Chemical Engineering Science 49 (2): 151–159.

    Article  CAS  Google Scholar 

  • Liu, Zhanpeng, Fang Pi, Xiaobing Guo, and Yu. Shujuan. 2019. Characterization of the structural and emulsifying properties of sugar beet pectins obtained by sequential extraction. Food Hydrocolloids 88: 31–42.

    Article  CAS  Google Scholar 

  • Marignetti, N, and G Mantovani. 1979/80. Liquid Sugar. Sugar Technology Reviews, 7 (1979/80) 3–47 (Elsevier Scientific Publishing Company) 7: 3–47.

  • Marques, C., R. Tarek, M. Sara, and S.K. Brar. 2016. Chapter 12 - Sorbitol Production From Biomass and Its Global Market. Platform Chemical Biorefinery - Future Green Industry 217–227.

  • Mathew, Sindhu, and T. Emilia Abraham. 2004. Ferulic Acid: An Antioxidant Found Naturally in Plant Cell Walls and Feruloyl Esterases Involved in its Release and Their Applications. Critical Reviews in Biotechnology 24 (2–3): 59–83.

    Article  CAS  PubMed  Google Scholar 

  • Maués, Jair Arone. 2007. Optimization of Power Generation from Bagasse and Sugarcane Waste in a Brazilian Sugar and Alcohol Mill. Proceedings of ISES World Congress (I-V): 2444–2448.

  • Maurus, Kerstin, Sharif Ahmed, Wiebke Getz, and Marian Kazda. 2018. Sugar beet silage as highly flexible feedstock for on demand biogas production. Sugar Industry 143 (12): 691–698.

    Article  Google Scholar 

  • McClements, David J., and Cansu E. Gumus. 2016. Natural emulsifiers - biosurfactants, phospholipids, biopolymers, and colloidal particles: molecular and physiochemical basis of functional performance. Advances in Colloid and Interface Science 234: 3–26.

    Article  CAS  PubMed  Google Scholar 

  • Mesbahi, Gholamreza, Jalal Jamalian, and Asgar Farahnaky. 2005. A comparative study on functional properties of beet and citrus pectins in food systems. Food Hydrocolloids 19 (4): 731–738.

    Article  CAS  Google Scholar 

  • Mladenovic, Dragana D., Aleksandra P. Djukic-Vukovic, Suncica D. Kocic-Tanackov, Jelena D. Pejin, and Ljiljana V. Mojovic. 2015. Lactic acid production on a combined distillery stillage and sugar beet molasses substrate. Journal of Chemical Technology and Biotechnology 91 (9): 2474–2479.

    Article  CAS  Google Scholar 

  • Mohdaly, Adel A.A.., Mohamed A. Sarhan, Iryna Smetanska, and Awad Mahmoud. 2010. Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. Journal of the Science of Food and Agriculture 90 (2): 218–226.

    Article  CAS  PubMed  Google Scholar 

  • Muir, Barbara M., Schorn, Paul M., Peacock, Stephen and Kruger, Charles. 2010. The South African and southern African Regions – Part II: Sugarcane Processing. In: ACS Symposium series: Sustainability of the Sugar and Sugar-Ethanol Industries. Eggleston G. (ed). American Chemical Society, Washington DC. Chapter 7: 99–113.

  • Müller, Hans-Heinrich. 2021. The “father of the beet sugar industry.” On the 200th anniversary of the death of Franz Carl Achard. Sugar Industry 146(4): 216–221.

  • Nakama, Y. 2017. Chapter 15 - Surfactants. Cosmetic Science and Technology - Theoretical Principles and Applications 231–244.

  • Nechyporchuk, Oleksandr, Mohamed N. Belgacem, and Julien Bras. 2016. Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products 93: 2–25.

    Article  CAS  Google Scholar 

  • Nigam, Poonam, and Manfred Vogel. 1991. Bioconversion of sugar industry by-products – molasses and sugar beet pulp for single cell protein production by yeasts. Biomass and Bioenergy 1 (6): 339–345.

    Article  CAS  Google Scholar 

  • Nolles, R, F Staps, and G van Engelen. 2016. The Unbeatable Beet: Biorefining of Sugar Beet Pulp. Materials for Energy, Efficiency and Sustainability: TechConnect Briefs 159–162.

  • Oishi, Yukako, Masaki Nakaya, Eitaro Matsui, and Atsushi Hotta. 2015. Structural and mechanical properties of cellulose composites made of isolated cellulose nanofibers and poly(vinyl alcohol). Composites Part a: Applied Science and Manufacturing 73: 72–79.

    Article  CAS  Google Scholar 

  • Olbrich, H. 1963. The Molasses. 2006. Berlin: Biotechnologie-Kempe GmbH: 131 pp.

  • Paananen, H., and J. Kuisma. 2000. Chromatographic separation of molasses components. Zuckerindustrie 125 (12): 978–981.

    CAS  Google Scholar 

  • Pacheco, M T, M Villamiel, R Moreno, and F J Moreno. 2019. Structural and Rheological Properties of Pectins Extracted from Industrial Sugar Beet By-Products. Molecules 2019, 24, 392; doi:https://doi.org/10.3390/molecules24030392www.mdpi.com/journal/molecules 24: 392–418. Accessed June 2020. www.mdpi.com/journal/molecules.

  • Panella, and L. 2010. Sugar beet as an energy crop. Sugar Technology 12 (3–4): 288–293.

    Article  CAS  Google Scholar 

  • Parkin, Geoff, and De Bruijn, Jan Maarten. 2010. Major Challenges and Changes in the European Sugar Sector. In: ACS Symposium series: Sustainability of the Sugar and Sugar-Ethanol Industries. Eggleston G. (ed). Americal Chemical Society, Washington DC. Chapter 3: 39–72

  • Prandi, Barbara, Stefania Baldassarre, Neha Babbar, Elena Bancalari, Pieter Vandezande, David Hermans, Geert Bruggeman, Monica Gatti, Kathy Elst, and Stefano Sforza. 2018. Pectin Oligosaccharides from sugatr beet pulp: molecular characterization and potential prebiotic activity. Food & Function 9 (3): 1557–1569.

    Article  CAS  Google Scholar 

  • Queneau, Y., S. Jarosz, B. Lewandowski, and J. Fitremann. 2008. Sucrose chemistry and applications of sucrochemicals. Advances in Carbohydrate Chemistry and Biochemistry 61: 217–212.

    Article  CAS  Google Scholar 

  • Ragauskas, AJ, CK Williams, BH Davison, G Britovse, J Cairney, CA Eckert, WJ Frederick Jr., et al. 2006. The Path Forward for Biofuels and Biomaterials. SCIENCE, January 27: 484–489. www.sciencemag.org.

  • Ralla, Theo, Hanna Salminen, Matthias Edelmann, Corinna Dawid, Thomas Hofmann, and Jochen Weiss. 2017. Sugar Beet Extract (Beta Vulgaris L.) as a New Naural Emulsifier: Emulsion Formation. Journal of Agricultural and Food Chemistry 65 (20): 4153–4160.

  • Ritala, Anneli, Suvi T. Häkkinen, Mervi Toivari, and Marilyn G. Wiebe. 2017. Single cell protein – state-of-the-art, industrial landscape and patents 2001–2016. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2017.02009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouilly, A., C. Geneau-Sbartai, and L. Rigal. 2009. Thermo-mechanical processing of sugar beet pulp. III. study of extruded films improvement with various plasticizers and cross-linkers. Bioresource Technology 100: 3076–3081.

    Article  CAS  PubMed  Google Scholar 

  • Berlowska, Joanna, Weronika Cieciura, Sebastian Borowski, Marta Dudkiewicz, Michal Binczarski, Izabela Witonksa, Anna Otlewska, and Dorota Kregiel. 2016. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production. Molecules 21.

  • Salameh, Mamdouh G. 2004. Oil Crises, Historical Perspective. Encyclopedia of Energy: 633–648

  • Šarić, Ljubiša Ć, Bojana V. Filipčev, Olivera D. Šimurina, Dragana V. Plavšić, Bojana M. Šarić, Jasmina M. Lazarević, Ivan Lj, and Milovanović. 2016. Sugar beet molasses: properties and applications in osmotic dehydration of fruits and vegetables. Food and Feed Research 43 (2): 135–144.

    Article  Google Scholar 

  • Šárka, Evzen, Zdenek Bubnik, Pavel Kadlec, and Anezka Vesela-Trilcova. 2008. The particle size of carbonation mud, and possibilities for influencing it. Journal of Food Engineering 87 (1): 45–50.

    Article  Google Scholar 

  • Šárka, E., Z. Bubnik, A. Hinkova, J. Gebler, and P. Kadlec. 2013. Beet molasses – desugarization, composition, properties and application possibilities. Sugar Industry 138 (2): 105–114.

    Article  Google Scholar 

  • Schiweck, H. 1994. Composition of sugar beet molasses. Zuckerindustry 119 (4S): 272–282.

    Google Scholar 

  • Schramm, Laurier L., Elaine N. Stasiuk, and D. Gerrard Marangoni. 2003. Surfactants and their applications. Annual Reports Section C (physical Chemistry) 99: 3–48.

    Article  CAS  Google Scholar 

  • Slugeň, D., M. Rosenberg, and P. Magdolen. 2005. Alternatives of sugar beet pulp use. Listy Cukrovarnické a Řepařské 121: 268–276.

    Google Scholar 

  • Soydal, Ulku, Mustafa Esen Marti, Suheyla Kocaman, and Gulnare Ahmetli. 2016. Evaluation of sugar mill lime waste in biobased epoxy composites. Polymer Composites 39 (3): 924–935.

    Article  CAS  Google Scholar 

  • Spiridon, Iuliana, and Valentin I. Popa. 2008. Chapter 13 - Hemicelluloses: Major Sources, Properties and Applications. Monomers, Polymers and Composites from Renewable Resources 289–304.

  • Staps, R., and R. Nolles. 2016. The Unbeatable Beet: The Power of Microcellulosic Fibers Unraveled. TechConnect Briefs 1: 188–191.

    Google Scholar 

  • Sun, Runcang, and Sara Hughes. 1991. Fractional extraction and physico-chemical characterization of hemicelluloses and cellulose from sugar beet pulp. Carbohydrate Polymers 36 (4): 293–299.

    Article  Google Scholar 

  • Tamimi, M.A., R.J. Palframan, J.M. Cooper, G.R. Gibson, and R.A. Rastall. 2006. In vitro fermentation of sugar beet arabinan and arabino-oligosaccharides by the human gut microflora. Journal of Applied Microbiology 100: 407–414.

    Article  CAS  Google Scholar 

  • Taskin, Mesut, Serkan Ortucu, Mehmet Nuri Aydogan, and Nazli Pinar Arslan. 2016. Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renewable Energy 99: 198–204.

    Article  CAS  Google Scholar 

  • Tomaszewska, J., D. Bielínski, M. Binczarski, J. Berlowska, P. Dziugan, J. Piotrowski, A. Stanishevskye, and I.A. Witonska. 2018. Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. RSC Advances 2018 (8): 3161.

    Article  Google Scholar 

  • Vaccari, Giuseppe, C. Nicolucci, G. Mantovani, and A. Monegato. 1994. Industrial production of paper using integral pulp from sugar beet. Zuckerind. 119 (10): 855–859.

    Google Scholar 

  • Vaccari, Giuseppe, C Nicolucci, G Mantovani, and A Monegato. 1995. Process for manufacturing paper from sugar-beet pulp and paper thus obtained. Europe Patent EP0644293A1. March.

  • Valli, Veronica, Ana María Gómez-Caravaca, Mattia Di Nunzio, Francesca Danesi, Maria Fiorenza Caboni, and Alessandra Bordoni. 2012. Sugar cane and sugar beet molasses, antioxidant-rich alternatives to refined sugar. Journal of Agricultural and Food Chemistry 60: 12508–12515.

    Article  CAS  PubMed  Google Scholar 

  • van der Poel, P W, H Schiweck, and T Schwartz. 1998. Sugar Technology - Beet and Cane Sugar Manufacture. Berlin: Verlag Dr Albert Bartens KG. a: 461–470; b: 40–50; c: 976; d: 438–443; e: 444.

  • Varaee, Mona, Masoud Honarvar, Mohammad H. Eikani, Mohammad R. Omidkhah, and Narges Moraki. 2019. Supercritical fluid extraction of free amino acids from sugar beet and sugar cane molasses. The Journal of Supercritical Fluids 144: 48–55.

    Article  CAS  Google Scholar 

  • Venkateshwar, M., K. Chaitanya, Md. Altaf, E.J. Mahammad, Hameeda Bee, and Gopal Reddy. 2010. Influence of micronutrients on yeast growth and β-D-fructofuranosidase production. Indian Journal of Microbiology 50: 325–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vučurović, V.M., and R.N. Razmovski. 2012. Sugar beet pulp as support for Saccharomyces cerivisiae immobilization in bioethanol production. Industrial Crops and Products 39: 128–134.

    Article  CAS  Google Scholar 

  • Wang, Ying, Yukihiro Tashiro, and Kenji Sonomoto. 2015a. Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. Journal of Bioscience and Bioengineering 119 (1): 10–18.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Yandan, Zhiwei Gong, Xiaobing Yang, Hongwei Shen, Qian Wang, Jihui Wang, and Zongbao Zhao. 2015b. Microbial lipid production from pectin-derived carbohydrates by oleaginous yeasts. Process Biochemistry 50 (7): 1097–1102.

    Article  CAS  Google Scholar 

  • Werpy, T, and G Petersen. 2004. Top Value Added Chemicals from Biomass; Volume I – ‘Results of Screening for Potential Candidates from Sugars and Synthesis Gas.’ Research Report, Washington: USA Department of Energy, 76. Accessed July 27, 2020. https://www.nrel.gov/docs/fy04osti/35523.pdf.

  • Xu, Ke., and Ping Xu. 2014. Betaine and beet molasses enhance L-Lactic acid production by Bacillus coagulans. PLoS ONE 9 (6): e100731. https://doi.org/10.1371/journal.pone.0100731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, C.L., H.S. Kim, J.S. Hong, J.H. Lee, Y.G. Han, Y.H. Jin, S.W. Son, S.H. Ha, and Y.Y. Kim. 2017. Effect of dietary sugar beet pulp supplementation on growth performance, nutrient digestibility, fecal Microflora, blood profiles and diarrhea incidence in weaning pigs. J Anim Sci Technol 59: 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Wengang, Yanhong Feng, Hezhi He, and Zhitao Yang. 2018. Environmentally-friendly extraction of cellulose nanofibers from steam-explosion pretreated sugar beet pulp. Materials 11 (7): 1160–1171.

    Article  PubMed Central  CAS  Google Scholar 

  • Zebiri, Ilhem, Sébastien Balieu, Arnaud Guilleret, Romain Reynaud, and Arnaud Haudrechy. 2011. The Chemistry of L-Sorbose. European Journal of Organic Chemistry 2905–2910.

  • Zhang, Jianguo, and Bo. Hu. 2014. Microbial Lipid Production from Corn Stover via Mortierella Isabellina. Applied Biochemistry and Biotechnology 174 (2): 574–586.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Wei, Yaan Zhang, Canhui Lu, and Yulin Deng. 2012. Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. Journal of Materials Chemistry 22: 11642–11650.

    Article  CAS  Google Scholar 

  • Zhen, X., and Y. Wang. 2015. An overview of methanol as an internal combustion engine fuel. Renewable and Sustainable Energy Reviews 52: 477–493.

    Article  CAS  Google Scholar 

  • Zheng, Ke., and Shengjie Ling. 2019. De novo design of recombinant spider silk proteins for material applications. Biotechnology Journal. https://doi.org/10.1002/biot.201700753.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Muir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muir, B.M., Anderson, A.R. Development and Diversification of Sugar Beet in Europe. Sugar Tech 24, 992–1009 (2022). https://doi.org/10.1007/s12355-021-01036-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-021-01036-9

Keywords

Navigation