Skip to main content

Advertisement

Log in

Valorization of Sugar-Ethanol Industry Waste Vinasse for Increased Second-Generation Ethanol Production Using Spathaspora passalidarum Yeast Strains

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

In this study, sugarcane bagasse hydrolysate supplemented with different proportions of sugar-ethanol industrial waste (vinasse) was used to optimize fermentative ethanol production using two Spathaspora passalidarum yeast strains isolated from decaying wood in Amazonian biome. The bagasse samples were pretreated chemically and enzymatically before using a binary factorial experimental design. The factorial design was carried out in two stages; in the first, a 24 factorial design was done to assess the effects of pretreated sugarcane bagasse hydrolysate and vinasse, ammonium sulfate concentration, yeast biomass concentration, and two different strains of yeast, S. passalidarum; in the second stage, a 23 factorial design was done to provide a more detailed analysis of the effects of vinasse supplementation on the fermentation process—this time, by modifying the ratio of sugarcane bagasse hydrolysate and vinasse and, more significantly, the same factor—biomass concentration. The results showed that the most significant factors for increasing bioethanol production in the 24 factorial design proved to be the following: inoculum and hydrolyzed bagasse supplementation with vinasse (the optimal being 75:25), followed by yeast concentration (optimal at 14% w/v cell wet weight) and then the type of strain used (S. passalidarum UFMG-HMD-14.1). The use of only hydrolyzed bagasse without vinasse (23 factorial design) had no significant influence on the results, nor did varying the concentration of nitrogen. This increase in ethanol production, which allows the same amount of ethanol productivity through a reduction in the carbon source, suggests it can lead to an improved final use for vinasse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alencar, B.R.A., A.L.S. Reis, R.F.R. de Souza, M.A. Morais Jr., R.S.C. Menezes, and E.D. Dutra. 2017. Recycling the liquid fraction of alkaline hydrogen peroxide in the pretreatment of corn stover. Bioresource Technology 241: 928–935.

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros, M., J.M. Oliva, M.J. Negro, P. Manzanares, and I. Ballesteros. 2004. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry 39(12): 1843–1848.

    Article  CAS  Google Scholar 

  • Basso, L.C., H.V. de Amorim, A.J. de Oliveira, and M.L. Lopes. 2008. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Research 8(7): 1155–1163.

    Article  PubMed  CAS  Google Scholar 

  • Beato, F.B., B. Bergdahl, C.A. Rosa, J. Forster, and A.K. Gombert. 2016. Physiology of Saccharomyces cerevisiae strains isolated from Brazilian biomes: New insights into biodiversity and industrial applications. FEMS Yeast Research 16(7): 1–14.

    Article  CAS  Google Scholar 

  • Cadete, R.M., M.A. Melo, K.J. Dussán, R.C.L.B. Rodrigues, S.S. Silva, J.E. Zilli, M.J.S. Vital, F.C.O. Gomes, M. Lachance, and C.A. Rosa. 2012. Diversity and physiological characterization of d-xylose-fermenting yeasts isolated from the Brazilian Amazonian forest. PLoS ONE 7(8): 1–11.

    Article  CAS  Google Scholar 

  • Cadete, R.M., R.O. Santos, M.A. Melo, A. Mouro, D.L. Gonçalves, B.U. Stambuk, F.C.O. Gomes, M. Lachance, and C.A. Rosa. 2009. Spathaspora arborariae sp. nov., a d-xylose-fermenting yeast species isolated from rotting wood in Brazil. FEMS Yeast Research 9(8): 1338–1342.

    Article  PubMed  CAS  Google Scholar 

  • Cassa-Barbosa, L.A., R.E.L. Procópio, I.T.S.R. Matos, and S.A. Filho. 2015. Isolation and characterization of yeasts capable of efficient utilization of hemicellulosic hydrolyzate as the carbon source. Genetics and Molecular Research 14(3): 11605–11612.

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira, M.C., D.M. da Silva, M.F. Alves, D.M.B. Dias, P.C. Martins, N.P. Bonifácio, and M.A.P. de Souza Júnior. 2013. Effect of including liquid vinasse in the diet of rabbits on growth performance. Revista Brasileira de Zootecnia 42(4): 259–263.

    Article  Google Scholar 

  • de Souza, R.F.R., E.D. Dutra, F.C.B. Leite, R.M. Cadete, C.A. Rosa, B.U. Stambuk, T.L.M. Stamford, and M.A. de Morais Jr. 2018. Production of ethanol fuel from enzyme-treated sugarcane bagasse hydrolysate using d-xylose-fermenting wild yeast isolated from Brazilian biomes. 3 Biotech 8(7): 312.

    Google Scholar 

  • Ghose, T.K. 1987. Measurement of cellulase activities. Pure and Applied Chemistry 59(2): 257–268.

    Article  CAS  Google Scholar 

  • Hou, X., and S. Yao. 2012. Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion. Applied Microbiology and Biotechnology 93(6): 2591–2601.

    Article  PubMed  CAS  Google Scholar 

  • Jojima, T., C.A. Omumasaba, M. Inui, and H. Yukawa. 2010. Sugar transporters in efficient utilization of mixed sugar substrates: Current knowledge and outlook. Applied Microbiology and Biotechnology 85(3): 471–480.

    Article  PubMed  CAS  Google Scholar 

  • Petrini, M.A., J.V. Rocha, J.C. Brown, and R.C. Bispo. 2016. Using an analytic hierarchy process approach to prioritize public policies addressing family farming in Brazil. Land Use Policy 51: 85–94.

    Article  Google Scholar 

  • Prada, S.M., M. Guekezian, and M.E.V. Suárez-Iha. 1998. Analytical methodology for the determination of sulfate in vinasse. Química Nova 21(3): 249–252.

    Article  CAS  Google Scholar 

  • Qureshi, M.I., A.M. Rasli, and K. Zaman. 2016. Energy crisis, greenhouse gas emissions and sectoral growth reforms: Repairing the fabricated mosaic. Journal of Cleaner Production 112: 3657–3666.

    Article  Google Scholar 

  • Rabelo, S.C., N.A.A. Fonseca, R.R. Andrade, R. Maciel Filho, and A.C. Costa. 2011. Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass and Bioenergy 35(7): 2600–2607.

    Article  CAS  Google Scholar 

  • Reis, A.L.S., E.D. Dutra, R.S.C. Menezes, and M.A. de Morais Jr. 2016. Second-generation ethanol from sugarcane and sweet sorghum bagasses using the yeast Dekkera bruxellensis. Industrial Crops and Products 92: 255–262.

    Article  CAS  Google Scholar 

  • Salomon, K.R., and E.E.S. Lora. 2009. Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass and Bioenergy 33(9): 1101–1107.

    Article  Google Scholar 

  • Silva, C.F., S.L. Arcuri, C.R. Campos, D.M. Vilela, J.G.L.F. Alves, and R.F. Schwan. 2011. Using the residue of spirit production and bio-ethanol for protein production by yeasts. Waste Management 31(1): 108–114.

    Article  PubMed  CAS  Google Scholar 

  • Soccol, C.R., L.P.S. Vandenberghe, A.B.P. Medeiros, S.G. Karp, M. Buckeridge, L.P. Ramos, A.P. Pitarelo, V. Ferreira-Leitão, L.M.F. Gottschalk, and M.A. Ferrara. 2010. Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresource Technology 101(13): 4820–4825.

    Article  PubMed  CAS  Google Scholar 

  • Sørensen, B. 2008. A sustainable energy future: Construction of demand and renewable energy supply scenarios. International Journal of Energy Research 32(5): 436–470.

    Article  Google Scholar 

  • Tanimura, A., T. Nakamura, I. Watanabe, J. Ogawa, and J. Shima. 2012. Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature. SpringerPlus 1(1): 1–7.

    Article  CAS  Google Scholar 

  • Tauk, S.M. 1982. Culture of Candida in vinasse and molasses: Effect of acid and salt addition on biomass and raw protein production. European Journal of Applied Microbiology and Biotechnology 16(4): 223–227.

    Article  CAS  Google Scholar 

  • Van Soest, P.J. 1963. Use of detergents in the analysis of fibrous feeds. 1. Preparation of fiber residues of low nitrogen content. Journal of the association of Official Agricultural Chemists 46: 825–829.

    Google Scholar 

  • Wanderley, M.C.A., C. Martín, G.J.M. Rocha, and E.R. Gouveia. 2013. Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresource Technology 128: 448–453.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, H., Q. Wu, S. Hu, H. Xu, and C.N. Rasmussen. 2015. Review of energy storage system for wind power integration support. Applied Energy 137: 545–553.

    Article  Google Scholar 

Download references

Acknowledgements

This study was partly supported by The Ministry of Science, Technology, and Innovation (MCTI) through financial subsidy; The Pernambuco State Science and Technology Support Foundation (FACEPE); and the National Counsel of Technological and Scientific Development (CNPq) for Postdoctoral and Graduate scholarship programs. We also thank Professor Everardo Sampaio, from Federal University of Pernambuco, for the suggestions and revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Leitão Vaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaz, F.L., de Souza, R.F.R., Dutra, E.D. et al. Valorization of Sugar-Ethanol Industry Waste Vinasse for Increased Second-Generation Ethanol Production Using Spathaspora passalidarum Yeast Strains. Sugar Tech 21, 312–319 (2019). https://doi.org/10.1007/s12355-018-0691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-018-0691-2

Keywords

Navigation