Skip to main content

Advertisement

Log in

Glucanolytic Rhizobacteria Produce Antifungal Metabolites and Elicit ROS Scavenging System in Sugarcane

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Plant growth-promoting bacteria have broad range usage in agriculture as an alternative to chemical fertilizers and fungicides. Their survival and persistency in the plant vicinity depend upon the production of secondary metabolites. In present study, 45 bacteria were isolated from the rhizosphere and endosphere of different sugarcane varieties growing at the different farmer’s fields of Punjab, Pakistan. Out of 45 isolates, 3 were able to produce hydrolytic enzyme glucanase. The glucanase-producing ability of bacterial strains was variable with solubilization zone 5.5–13.8 mm of different substrates. Dinitrosalicylic acid (DNS) quantification depicted the production of glucanase (0.1–0.3 U/mL of culture filtrate) by the antagonistic strains. All the glucanase-producing bacteria significantly inhibited the economically important pathogens of sugarcane, i.e., Fusarium moniliforme (45–56%) and Colletotrichum falcatum (52–63%), and pathogens of other crops, i.e., Fusarium oxysporum (58–63%), Rhizoctonia solani (42–53%) and Macrophomina phaseolina (53–61%). The glucanase-producing bacteria significantly induced the activities of enzymes involved in ROS scavenging, viz. SOD, POD, CAT and PPO by 1.4–2.0-fold. The glucanase-producing bacteria MAZ-3SR was identified as Bacillus amyloliquefaciens, while MAZ-10SR and MAZ-29SR were identified as Bacillus subtilis by 16S rDNA sequence comparision. These glucanolytic bacteria could be effectively used in sugarcane disease management and provide an effective way of enumerating the bioantagonists from sugarcane rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham, A., S.P. Narayanan, S. Philip, D.G. Nair, A. Chandrasekharan, and J. Kochupurackal. 2013. In silico characterization of a novel β-1, 3-glucanase gene from Bacillus amyloliquefaciens—A bacterial endophyte of Hevea brasiliensis antagonistic to Phytophthora meadii. Journal of Molecular Modeling 19: 999–1007.

    Article  PubMed  CAS  Google Scholar 

  • Alquéres, S., C. Meneses, L. Rouws, M. Rothballer, I. Baldani, M. Schmid, and A. Hartman. 2013. The bacterial superoxidedismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus Pal5. Molecular Plant-Microbe Interaction 26: 937–945.

    Article  CAS  Google Scholar 

  • Bakker, A.W., and B. Schippers. 1987. Microbial cyanides production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Microbiology and Biochemistry 19: 451–457.

    Article  CAS  Google Scholar 

  • Chhabra, M.L., B. Parameswari, and R. Viswanathan. 2016. Pathogenic behaviour pattern of Colletotrichum falcatum isolates of sugarcane in sub-tropical India. Vegetos—An International Journal of Plant Research 29: 76–79.

    Article  Google Scholar 

  • Denizci, A.A., D. Kazan, E.C.A. Abeln, and A. Erarslan. 2004. Newly isolated Bacillus clausii GMBAE 42: an alkaline protease producer capable to grow under highly alkaline conditions. Journal of Applied Microbiology 96: 320–327.

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa, R.S., P. Plumb-Dhindsa, and T.A. Thorpe. 1981. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32(1): 93–101.

    Article  CAS  Google Scholar 

  • dos Santos, C.M., M. de Almeida Silva, G.P.P. Lima, F.P.D.A.P. Bortolheiro, M.C. Brunelli, L.A. de Holanda, and R. Oliver. 2015. Physiological changes associated with antioxidant enzymes in response to sugarcane tolerance to water deficit and rehydration. Sugar Tech 17 (3): 291–304.

    Article  CAS  Google Scholar 

  • Fornazier, R.F., R.R. Ferreira, A.P. Vitoria, S.M.G. Molina, P.J. Lea, and R.A. Azevedo. 2002. Effects of cadmium on antioxidant enzyme activities in sugar cane. Biologia Plantarum 45(1): 91–97.

    Article  CAS  Google Scholar 

  • Hassan, M.N., S. Afghan, and F.Y. Hafeez. 2010. Suppression of red rot caused by Colletotrichum falcatum on sugarcane plants using plant growth-promoting rhizobacteria. BioControl 55: 531–542.

    Article  Google Scholar 

  • Hammerschmidt, R., E.M. Nuckles, and J. Kuć. 1982. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology 20 (1): 73IN977–76IN1082.

    Google Scholar 

  • Hassan, M.N., S.Z.U.H. Shah, S. Afghan, and F.Y. Hafeez. 2015a. Suppression of red rot disease by Bacillus sp. based biopesticide formulated in non-sterilized sugarcane filter cake. BioControl 60: 691–702.

    Article  CAS  Google Scholar 

  • Hassan, M.N., N. Sahar, S. Afghan, and F.Y. Hafeez. 2015b. Suppression of red rot disease by Bacillus sp based biopesticide formulated in non-sterilized sugarcane filter cake. BioControl 60: 691–702.

    Article  CAS  Google Scholar 

  • Hoang, N.V., A. Furtado, F.C. Botha, B.A. Simmons, and R.J. Henry. 2015. Potential for genetic improvement of sugarcane as a source of biomass for biofuels. Frontiers in Bioengineering and Biotechnology 3: 182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jincy, M., M. Djanaguiraman, P. Jeyakumar, K.S., Subramanian, S. Jayasankar, and G. Paliyath. 2017. Inhibition of phospholipase D enzyme activity through hexanal leads to delayed mango (Mangifera indica L.) fruit ripening through changes in oxidants and antioxidant enzymes activity. Scientia Horticulturae 218: 316–325.

    Article  CAS  Google Scholar 

  • Karim, A., M.A. Nawaz, A. Aman, and S. Ali-ul-Qader. 2015. Hyper production of cellulose degrading endo (1,4) β-d-glucanase from Bacillus licheniformis KIBGE-IB2. Journal of Radiation Research and Applied Research 8: 160–165.

    CAS  Google Scholar 

  • Khan, A.N., F. Shair, K. Malik, Z. Hayat, M.A. Khan, F.Y. Hafeez, and M.N. Hassan. 2017. Molecular identification and genetic characterization of Macrophomina phaseolina strains causing pathogenicity on sunflower and chickpea. Frontiers in Microbiology 8: 1309.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, Y.G., H.K. Kang, K.D. Kwon, C.H. Seo, H.B. Lee, and Y. Park. 2015. Antagonistic activities of novel peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum. Journal of Agricultural and Food Chemistry 63(48): 10380–10387.

    Article  PubMed  CAS  Google Scholar 

  • Mayer A.M, E. Harel, and R.B. Shaul. 1965. Assay of catechol oxidase, a critical comparison of methods. Phytochemistry 5: 783–789.

    Article  Google Scholar 

  • McCleary, B.V. 1980. New chromogenic substrates for the assay of alpha-amylase and (1 → 4)-β-D-glucanase. Carbohydrate Research 86 (1): 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Meneses, C., T. Gonçalves, S. Alquéres, L. Rouws, R. Serrato, M. Vidal, and J.I. Baldani. 2017. Gluconacetobacter diazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization. Plant and Soil 416: 1–15.

    Article  CAS  Google Scholar 

  • Montealegre, J.R., R. Herrera., J.C. Velásquez., P. Silva., X. Besoaín, and L.M. Pérez. 2005. Biocontrol of root and crown rot in tomatoes under greenhouse conditions using Trichoderma harzianum and Paenibacillus lentimorbus: Additional effect of solarization. Electronic Journal of Biotechnology. https://doi.org/10.4067/S0717-34582005000300004.

    Article  Google Scholar 

  • Nagpure, A., C. Bharti, and R.K. Gupta. 2014. Mycolytic enzymes produced by Streptomyces violaceusniger and their role in antagonism towards wood-rotting fungi. Journal of Basic Microbiology 54: 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Prathima, P., M. Raveendran, K. Kumar, P. Rahul, V.G. Kumar, R. Viswanathan, A.R. Sundar, P. Malathi, D. Sudhakar, and P. Balasubramaniam. 2013. Differential regulation of defense-related gene expression in response to red rot pathogen Colletotrichum falcatum infection in sugarcane. Applied Biochemistry and Biotechnology 171: 488–503.

    Article  PubMed  CAS  Google Scholar 

  • Rais, A., M. Shakeel, F.Y. Hafeez, and M.N. Hassan. 2016. Plant growth promoting rhizobacteria suppress blast disease caused by Pyricularia oryzae and increase grain yield of rice. BioControl 61: 769–780.

    Article  CAS  Google Scholar 

  • Rais, A., Z. Jabeen, F. Shair, F.Y. Hafeez, and M.N. Hassan. 2017. Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS ONE 12: 1–17.

    Article  CAS  Google Scholar 

  • Sadiq, S., M. Imran, M.N. Hassan, M. Iqbal, Y. Zafar, and F.Y. Hafeez. 2014. Potential of bacteriocinogenic Lactococcus lactis subsp. lactis inhabiting low pH vegetables to produce nisin variants. LWT-Food. Science and Technology 59 (1): 204–210.

    CAS  Google Scholar 

  • Schwartz, W., Vincent J. M. 1972. A Manual for the Practical Study of the Root-Nodule Bacteria (IBP Handbuch No. 15 des International Biology Program, London). XI u. 164 S., 10 Abb., 17 Tab., 7 Taf. Oxford-Edinburgh 1970: Blackwell Scientific Publ., 45 s. Z Allg Mikrobiol 12: 440.

    Article  Google Scholar 

  • Schwyn, B., and J. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160: 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Skidmore, A.M., and C.H. Dickinson. 1976. Colony interactions and hyphal interference between Septoria nodorum and phylloplane fungi. Transactions of the British Mycological Society 66 (1): 57–64.

    Article  Google Scholar 

  • Senthil, N., T. Raguchander, R. Viswanathan, and R. Samiyappan. 2003. Talc formulated fluorescent pseudomonads for sugarcane red rot suppression and enhanced yield under field conditions. Sugar Tech 5: 37–43.

    Article  CAS  Google Scholar 

  • Sermsathanaswadi, J., S. Baramee, C. Tachaapaikoon, P. Pason, K. Ratanakhanokchai, and A. Kosugi. 2017. The family 22 carbohydrate-binding module of bifunctional xylanase/β-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation. Enzyme and Microbial Technology 96: 75–84.

    Article  PubMed  CAS  Google Scholar 

  • Shakeel, M., A. Rais, M.N. Hassan, and F.Y. Hafeez. 2015. Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Frontiers in Microbiology 6: 1286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, P., A.B. Jha, R.S. Dubey, and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany ID 217037: 1–26.

    Google Scholar 

  • Singh, R.P., and P.N. Jha. 2017. The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Frontiers in Microbiology 8: 1945.

    Article  PubMed  PubMed Central  Google Scholar 

  • Souza, T.P., R.O. Dias, and M.C. Silva-Filho. 2017. Defense-related proteins involved in sugarcane responses to biotic stress. Genetics and Molecular Biology 40: 360–372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan, Z.Y., X. Xiao-Dong, W. En-Tao, G. Jun-Lian, M. Esperanza, and C. Wen-Xin. 1997. Phylogenetic and genetic relationships Mesorhizobium tianshanense and related rhizobia. International Journal of Systematic Bacteriology 47: 874–879.

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan, R., and G.P. Rao. 2011. Disease scenario and management of major sugarcane diseases in India. Sugar Tech 13: 336–353.

    Article  CAS  Google Scholar 

  • Viswanathan, R., and R. Samiyappan. 1999. Induction of systemic resistance by plant growth promoting rhizobacteria against red rot disease in sugarcane. Sugar Tech 1: 67–76.

    Article  Google Scholar 

  • Viswanathan, R., and R. Samiyappan. 2000. Efficacy of Pseudomonas spp. strains against soil borne and sett borne inoculum of Colletotrichum falcatum causing red rot disease in sugarcane. Sugar Tech 2: 26–29.

    Article  Google Scholar 

  • Wilson, K. 1987. Preparation of genomic DNA from bacteria. In Current protocols in molecular biology, ed. F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, 2.4.1–2.4.5. New York: Wiley.

    Google Scholar 

  • Wood, T.M., and K.M. Bhat. 1988. Methods for measuring cellulase activities. Methods in Enzymology 160: 87–112.

    Article  CAS  Google Scholar 

  • Zhao, D., and Y.R. Li. 2015. Climate change and sugarcane production: Potential impact and mitigation strategies. International Journal of Agronomy ID 547386: 10.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Higher Education Commission (HEC), Pakistan, for providing funds under the research Grant (20-2991). We would also acknowledge the fellows for their motivation and help in the work. A special thanks to colleagues who helped in improving the English of manuscript .We are also thankful to Mr. Habib Ullah for helping in molecular work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Nadeem Hassan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest including financial, academic, commercial, political or any other.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zia, M.A., Yasmin, H., Shair, F. et al. Glucanolytic Rhizobacteria Produce Antifungal Metabolites and Elicit ROS Scavenging System in Sugarcane. Sugar Tech 21, 244–255 (2019). https://doi.org/10.1007/s12355-018-0654-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-018-0654-7

Keywords

Navigation