Skip to main content

Advertisement

Log in

Xylitol Production by Candida tropicalis 31949 from Sugarcane Bagasse Hydrolysate

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Application of microbial fermentation of xylose to produce xylitol can not only turn waste into useful products and conserve resources, but also protect the environment. Currently, more than 100 kinds of microorganisms are known to ferment xylose, among which Candida tropicalis has strong xylose conversion ability and high tolerance to inhibitors such as furfural, acetate, and phenolics in xylose mother liquor. The present study focused on fermenting xylose hydrolysate from sugarcane bagasse to produce xylitol using C. tropicalis strain 31949. The effects of inoculum age, inoculum quantity, and initial xylose concentration on xylitol fermentation by C. tropicalis 31949 were discussed. The following optimum fermentation conditions were determined: inoculum quantity, 10%; inoculum age, 26 h; and initial xylose concentration, 100 g/L. Under these optimal fermentation conditions, C. tropicalis 31949 could ferment sugarcane bagasse hydrolysate, which was pretreated by vacuum concentration and activated carbon detoxification decoloration, to produce 62.9800 g/L xylitol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves, L.A., M. Vitolo, and M.G.A. Felipe. 2002. Xylose reductase and xylitol dehydrogenase activities of Candida guilliermondii as a function of different treatments of sugarcane bagasse hemicellulosic hydrolysate employing experimental design. Applied Biochemistry and Biotechnology 98–100 (1–9): 403–413.

    Article  PubMed  Google Scholar 

  • Ahmed, Z., S.J. Hwang, S.K. Shin, and J.H. Song. 2010. Enhanced toluene removal using granular activated carbon and a yeast strain Candida tropicalis, in bubble-column bioreactors. Journal of Hazardous Materials 176 (1–3): 849–855.

    Article  PubMed  CAS  Google Scholar 

  • Bar, A. 1988. Caries prevention with xylitol. A review of the scientific evidence. World Review of Nutrition and Dietetics 55: 183–209.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Y., S.L. Yan, and L.X. Ming. 2008. The research progress in the production process and application of xylitol. Gansu Petrochemical Industry 22 (3): 18–21.

    Google Scholar 

  • Converti, A., J.M. Dominguez, P. Perego, S.S. Silva, and M. Zilli. 2000. Wood hydrolysis and hydrolyzate detoxification for subsequent xylitol production. Chemical Engineering and Technology 23 (11): 1013–1020.

    Article  CAS  Google Scholar 

  • Chandel, A.K., R.K. Kapoor, A. Singh, and R.C. Kuhad. 2007. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technology 98 (10): 1947–1950.

    Article  PubMed  CAS  Google Scholar 

  • Dong, L.H., X.Y. Zhou, and Z.H. Zhang. 2004. Research progress in biotransformation production of xylitol. Science Bulletin 20 (1): 37–41.

    Google Scholar 

  • Dominguez, J.M., C.S. Gong, and G.T. Tsao. 1997. Production of xylitol from d-xylose by Debaryomyces hansenii. Applied Biochemistry and Biotechnology 117 (1): 63–65.

    Google Scholar 

  • Deng, L.H., Y.H. Wang, Y. Zhang, and R.Y. Ma. 2004. Study on fermentation of xylitol by Candida tropicalis. Food and Fermentation Industries 30 (9): 37–40.

    CAS  Google Scholar 

  • Eryasar, K., and S. Karasu-Yalcin. 2016. Evaluation of some lignocellulosic byproducts of food industry for microbial xylitol production by Candida tropicalis. Biotech 6 (2): 202.

    Google Scholar 

  • Feng, Y.Q., and J.G. Wang. 2004. Xylitol characteristics and its application in food. Food Science 25 (11): 379–381.

    CAS  Google Scholar 

  • Gong, C., T.A. Claypool, L.D. Mccracken, C.M. Maun, and P.P. Ueng. 1983. Conversion of pentoses by yeasts. Biotechnology and Bioengineering 25 (1): 85–102.

    Article  PubMed  CAS  Google Scholar 

  • Hou, K. 2009. Research on bioconversion of xylitol using corn cob as raw material. Changchun: Jilin University.

    Google Scholar 

  • Jeon, Y.J., H.S. Shin, and P.L. Rogers. 2011. Xylitol production from a mutant strain of Candida tropicalis. Letters in Applied Microbiology 53 (1): 106–113.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.Y., J.H. Kim, and D.K. Oh. 1997. Improvement of xylitol production by controlling oxygen supply in Candida parapsilosis. Journal of Fermentation and Bioengineering 83 (3): 267–270.

    Article  CAS  Google Scholar 

  • Kumar, V., M. Krishania, S.P. Preet, V. Ahluwalia, and E. Gnansounou. 2018. Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192. Bioresource Technology 251: 416.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C., G.G. Fang, Y.Q. Shi, Y.J. Deng, and Y.F. Yin. 2010a. Research progress in the production technology and application of xylitol. Forest Chemicals and Industry 30 (6): 113–118.

    CAS  Google Scholar 

  • Lorliam, W., A. Akaracharanya, S. Krajangsang, V. Tolieng, and S. Tanasupawat. 2016. Optimization of xylitol production by Candida tropicalis A26. Chiang Mai Journal of Science 44 (1): 50–58.

    Google Scholar 

  • Liu, Z.J., Z.Q. Huang, H.Y. Hu, N. Wang, D.H. Jiang, and Y.F. Tan. 2010b. Effects of mechanically activated pretreatment on the separation of bagasse components. Grain and Oil Processing (Electronic Version) 7: 151–154.

    Google Scholar 

  • Liu, Z.B. 2015. Research on the key technology of corn straw protein fermentation feed preparation–pretreatment of corn straw and biological wastewater treatment. Qingdao: Qingdao University of Science and Technology.

    Google Scholar 

  • Mussatto, S.I., and I.C. Roberto. 2004. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technology 93 (1): 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Ma, W.C., Y.J. Li, W.H. Gao, and J.P. An. 2012. Response surface methodology to optimize the production of xylitol by different types of Candida tropicalis. Food Industry Science & Technology 33 (3): 145–148.

    CAS  Google Scholar 

  • Mareczky, Z., A. Fehér, C. Fehér, Z. Barta, and K. Réczey. 2016. Effects of pH and aeration conditions on xylitol production by Candida and Hansenula Yeasts. Periodica Polytechnica, Chemical Engineering 60 (1): 54–59.

    Article  CAS  Google Scholar 

  • Nolleau, V., L. Preziosibelloy, J.P. Delgense, and J.M. Navarro. 1993. Xylitol production from xylose by two yeast strains: Sugar tolerance. Current Microbiol 27 (4): 191–197.

    Article  CAS  Google Scholar 

  • Nigam, P., and D. Singh. 1995. Processes for fermentative production of xylitol-a sugar substitute. Process Biochemistry 30 (2): 117–124.

    CAS  Google Scholar 

  • Oh, D.K., and S.Y. Kim. 1998. Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Applied Microbiology and Biotechnology 50 (4): 419–425.

    Article  PubMed  CAS  Google Scholar 

  • Parajo, J.C., H. Dominguez, and J.M. Dominguez. 1998. Biotechnological production of xylitol. 1998. Part 3: Operation in culture media made from lignocellulose hydrolysates. Bioresource Technology 66 (98): 25–40.

    Article  CAS  Google Scholar 

  • Roberto, I.C., M.G.A. Felipe, I.M. Mancilha, M. Vitolo, S. Sato, and S.S. Silva. 1995. Xylitol production by Candida gulliermondii as an approach for the utilization of agroindustrial residues. Bioresource Technology 51 (2–3): 255–257.

    Article  CAS  Google Scholar 

  • Saha, B.C., and J. Woodward. 1997. Fuels and chemicals from biomass, 307–319. Washington: The American Chemical Society.

    Book  Google Scholar 

  • Silva, G.T.D., L.M. Chiarello, E.M. Lima, and L.P. Ramos. 2016. Sono-assisted alkaline pretreatment of sugarcane bagasse for cellulosic ethanol production. Catalysis Today 269: 21–28.

    Article  Google Scholar 

  • Silva, S.S., Z.R. Matos, and W. Carvalho. 2005. Effects of sulfuric acid loading and residence time on the composition of sugarcane bagasse hydrolysate and its use as a source of xylose for xylitol bio production. Biotechnology Progress 21 (5): 1449–1452.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.B., and C.F. Wang. 2005. Functional sweetener-xylitol. Chinese Journal of Food and Nutrition 10: 28–29.

    Google Scholar 

  • Wang, Z., H.Y. Chen, C.H. Shen, L. Fan, and C. Hu. 2006. Preliminary study on the production of xylitol by distiller’s grains hydrolyzate from Candida tropicalis. China Brewing 25 (3): 44–47.

    CAS  Google Scholar 

  • Okawa, Y., and K. Goto. 2006. Antigenicity of Candida tropicalis strain cells cultured at 27 and 37 °C. Pathogens & Disease 46 (3): 438–443.

    CAS  Google Scholar 

  • Yuan, P., H.Z. Ling, G. Song, and J.P. Ge. 2013. Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochemical Engineering Journal 75 (24): 86–91.

    Google Scholar 

  • Yewale, T., S. Panchwagh, S. Rajagopalan, P.B. Dhamole, and R. Jain. 2016. Enhanced xylitol production using immobilized Candida tropicalis with non-detoxified corn cob hemicellulosic hydrolysate. Biotech 6 (1): 75.

    Google Scholar 

  • Zhang, X.Y., S.M. Wang, X.Q. Zhu, X.P. Guo, and P.X. Ling. 2006. Production of xylitol by fermentation of Candida tropicalis. Food and Drugs A 8 (11): 27–30.

    Google Scholar 

  • Zhu, J., H. Z. Ling, D. Zhao, J. P. Ge, W. X. Ping, W. L. Shen, and G. Song. 2014. Xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. Brewing Technology 2: 16–19.

    Google Scholar 

  • Zhu, Y.Y., B. Wang, H. Chen, and S.L. Yang. 2016. Optimization of bioconversion xylitol fermentation conditions in bamboo shoot shell hydrolyzate. China Brewing 35 (4): 118–121.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Study on Enzymatic Hydrolysis of Hemicellulose from Bagasse Pretreated with Ultrasonic and Acid (AE120067). The authors would like to express their gratitude to Prof. Weidong Sun and Rong Liu for their help and advice. The authors are thankful to International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Liu, L., Li, S. et al. Xylitol Production by Candida tropicalis 31949 from Sugarcane Bagasse Hydrolysate. Sugar Tech 21, 341–347 (2019). https://doi.org/10.1007/s12355-018-0650-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-018-0650-y

Keywords

Navigation