Skip to main content
Log in

Isolation and Expression Analysis of Catalase Genes in Erianthus arundinaceus and Sugarcane

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Erianthus arundinaceus is one of the most important genus of sugarcane family with strong abiotic stress tolerance. In this paper, two novel full-length catalase (CAT) genes ( EaCAT-1b and SoCAT-1c, GenBank accession numbers KF864228 and KF864231) cDNA sequences were cloned by blasting the sugarcane EST database using sorghum CAT gene (GenBank accession number XM 002437586.1) cDNA sequence as a source probe. The length of cDNA for two genes was 1, 532 bp, containing 10 bp of 5′ untranslated region (UTR) and 43 bp of the 3′ UTR, and an open reading frame of 1479 bp encoding a polypeptide of 492 amino acids. High homology of cDNA (98.6 %) was found between EaCAT-1b and SoCAT-1c. Twenty-two single nucleotide polymorphisms were found in cDNA between EaCAT-1b and SoCAT-1c and eight amino acid mutation sites in the predicted proteins. The putative EaCAT-1b and SoCAT-1c protein sequence is highly conserved with sorghum, rice, corn and other species by homologous evolutionary analysis. SDS-PAGE analysis showed that the prokaryotic expression product was a fusion protein. Real-time qPCR analysis demonstrated that the expression profile of EaCAT-1b and SoCAT-1c genes was different under various drought stress time. It was also suggested CAT-1 has a different drought response mode in E. arundinaceus and sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chen, R.K., L.P. Xu, and Y.Q. Lin. 2011. Modern sugarcane genetic breeding. Beijing: China agriculture press.

    Google Scholar 

  • Chen, H.J., S.D. Wu, G.J. Huang, C.Y. Shen, M. Afiyanti, W.J. Li, and Y.H. Lin. 2012. Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation. Journal of Plant Physiology 169: 86–97.

    Article  CAS  PubMed  Google Scholar 

  • Drory, A., and W.R. Woodson. 1992. Molecular cloning and nucleotide sequence of a cDNA encoding catalase from tomato. Plant Physiology 100: 1605–1606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, Y.Y., P.C. Wang, J. Chen, and C.P. Song. 2008. Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. Journal of Integrative Plant Biology 50: 1318–1326.

    Article  CAS  PubMed  Google Scholar 

  • Frugoli, J.A., H.H. Zhong, M.L. Nuccio, P. McCourt, M.A. McPeek, T.L. Thomas, and C.R. McClung. 1996. Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiology 112: 327–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan, L., and J.G. Scandalios. 1995. Developmentally related responses of maize catalase genes to salicylic acid. Proceedings of the National Academy of Sciences 92: 5930–5934.

    Article  CAS  Google Scholar 

  • Guan, Z.Q., T.Y. Chai, Y.X. Zhang, J. Xu, and W. Wei. 2009. Enhancement of Cd-tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76: 623–630.

    Article  CAS  PubMed  Google Scholar 

  • He, X.Y., Y.L. Zhang, Z.H. He, Y.P. Wu, Y.G. Xiao, C.X. Ma, and X.C. Xia. 2008. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theoretical and Applied Genetics 116(2): 213–221.

    Article  CAS  PubMed  Google Scholar 

  • Jeppe, R.A., and L. Thomas. 2003. Functional markers in plants. Trends in Plant Science 8(11): 554–560.

    Article  Google Scholar 

  • Kwon, S.I., and C.S. An. 2001. Molecular cloning, characterization and expression analysis of a catalase cDNA from hot pepper (Capsicum annuum L.). Plant Science 160: 961–969.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Y.L. Yao, X.W. Hu, S.L. Xing, and L. Xu. 2015. Cloning and allelic variation of two novel catalase genes (SoCAT-1 and SsCAT-1) in Saccharum officinarum L. and Saccharum spontaneum L. Biotechnology and Biotechnological Equipment 29(3): 431–440.

    Article  CAS  Google Scholar 

  • Livak, K.J., T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔct method. Methods 25: 402-408.

  • Mary, S., N. Nair, P.K. Chaturvedi, and A. Selvi. 2006. Analysis of genetic diversity among Saccharum spontaneum L. from four geographical regions of India, using molecular markers. Genetic Resources and Crop Evolution 53: 1221–1231.

    Article  CAS  Google Scholar 

  • Michael, D.G., and M.D. Katrien. 1998. Comparative genetics in the grasses. Proceedings of the National Academy of Sciences 95: 1971–1974.

    Article  Google Scholar 

  • Pan, Y.B. 2006. Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech 8: 246–256.

    Article  CAS  Google Scholar 

  • Purev, M., Y.J. Kim, M.K. Kim, R.K. Pulla, and D.C. Yang. 2010. Isolation of a novel catalase (Cat1) gene from Panax ginseng and analysis of the response of this gene to various stresses. Plant Physiology and Biochemistry 48: 451–460.

    Article  CAS  PubMed  Google Scholar 

  • Que, Y.X., L.P. Xu, S. Xu, J.S. Zhang, M.Q. Zhang, and R.K. Chen. 2009. Selection of control genes in Real-time qPCR analysis of gene expression in sugarcane. Chinese Journal of Tropical Crops 3: 274–278.

    Google Scholar 

  • Que, Y.X., J.X. Liu, L.P. Xu, J.R. Guo, and R.K. Chen. 2012. Molecular cloning and expression analysis of an Mn-superoxide dismutase gene in sugarcane. African Journal of Biotechnology 11(3): 552–560.

    CAS  Google Scholar 

  • Schrader, M., and H.D. Fahimi. 2006. Peroxisomes and oxidative stress. Biochimica et Biophysica Acta 1763(12): 1755–1766.

    Article  CAS  PubMed  Google Scholar 

  • Skadsen, R.W., P. Schulze-Lefert, and J.M. Herbst. 1995. Molecular cloning, characterization and expression analysis of two catalase isozyme genes in barley. Plant Molecular Biology 29: 1005–1014.

    Article  CAS  PubMed  Google Scholar 

  • Su, Y.C., J.L. Guo, H. Ling, S.S. Chen, S.S. Wang, L.P. Xu, A.C. Allan, and Y.X. Que. 2014. Isolation of a Novel Peroxisomal Catalase Gene from Sugarcane, Which Is Responsive to Biotic and Abiotic Stresses. PLoS ONE 9(1): e84426.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tai, P.Y.P., and J.D. Miller. 2001. A core collection for Saccharum spontaneum L. from the world collection of sugarcane. Crop Science 41: 879–885.

    Article  Google Scholar 

  • Wang, Z.H., and L. Shen. 2006. Manganese catalase and their analogue study progress. Journal of Hangzhou Teachers College (Natural Science Edition) 5(6): 465–468.

    Google Scholar 

  • Wang, S., K.K. Zhang, X. Huang, Y.J. Fan, L.T. Yang, and Y.R. Li. 2014. Cloning and functional analysis of thylakoidal ascorbate peroxidase (TAPX) gene in sugarcane. Sugar Tech. doi:10.1007/s12355-014-0354-x.

    Google Scholar 

  • Willekens, H., R. Villarroel, M. Van-Montagu, D. Inze, and W. Van-Camp. 1994. Molecular identification of catalases from Nicotiana plumbaginifolia (L.). FEBS Letters 352: 79–83.

    Article  CAS  PubMed  Google Scholar 

  • Zamocky, M., P.G. Furtmüller, and C. Obinger. 2008. Evolution of catalases from bacteria to humans. Antioxidants & Redox Signaling 10(9): 1527–1548.

    Article  CAS  Google Scholar 

  • Zhang, W., and J. Dubcovsky. 2008. Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theoretical and Applied Genetics 116(5): 635–645.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, G.L., S. Guang, and T.D. Fu. 2001. Gene cloning techniques. Journal of Huazhong Agricultural University 20(6): 584–592.

    CAS  Google Scholar 

  • Zmocky, M., and F. Koller. 1999. Understanding the structure and function of catalase: Clues from molecular evolution and in vitro mutagenesis. Progress in Biophysics and Molecular Biology 72(1): 19–66.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Institute Research Grant of CATAS-ZES (zjky201501) and The National Non-profit Institute Research Grant of CATAS-ITBB (ITBB2015ZY19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Hu, X., Yao, Y. et al. Isolation and Expression Analysis of Catalase Genes in Erianthus arundinaceus and Sugarcane. Sugar Tech 18, 468–477 (2016). https://doi.org/10.1007/s12355-015-0422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-015-0422-x

Keywords

Navigation