Skip to main content
Log in

Isolation, Characterization and Promoter Analysis of Cell Wall Invertase Gene SoCIN1 from Sugarcane (Saccharum spp.)

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Cell wall invertase (CIN) plays an important role in carbohydrate partitioning and regulation of sink-source interaction. In this study, a full length cDNA encoding CIN gene was cloned by RT-PCR and RACE-PCR from sugarcane. The open reading frame of 1731 bp encodes a protein of 577 amino acids with a predicted molecular mass of 141.04 kDa and theoretical PI of 4.67. A size of 4,537 bp DNA encoding SoCIN1 was isolated, which contains seven exons and six introns. Using genome walking approach, a promoter sequence of 974 bp of SoCIN1 was isolated, and prediction with PlantCARE and PLACE software revealed that it has several key cis-regulatory elements known to be involved in various biotic and abiotic plant stresses. Relative expression in specific tissues was done using qRT-PCR, and the results demonstrated that SoCIN1 expression level was higher in the immature leaves and maturing leaves than the matured leaves and internodes at elongation stage and processing maturing stage. The conditions of 15 % PEG and 6 °C could have a similar function for inducing the expression of SoCIN gene in leaves, while 15 % PEG, 100 mM NaCl and 6 °C could induce the expression of SoCIN gene in roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bocock, P.N., A.M. Morse, C. Dervinis, and J.M. Davis. 2008. Evolution and diversity of invertase genes in Populus trichocarpa. Planta 227: 565–576.

    Article  CAS  PubMed  Google Scholar 

  • Carson, D.L., and F.C. Botha. 2002. Genes expressed in sugarcane maturing internodal tissue. Plant Cell Reporters 20: 1075–1081.

    Article  CAS  Google Scholar 

  • Chen, T.H., Y.C. Huang, C.H. Yang, C.C. Yang, A.Y. Wang, and H.Y. Sung. 2009. Insights into the catalytic properties of bamboo vacuolar invertase through mutational analysis of active site residues. Phytochemistry 70: 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Cho, J.I., S.K. Lee, H.K. Kim, S.H. Jun, Y.H. Lee, S.H. Bhoo, K.W. Lee, G. An, T.R. Hahn, and J.S. Jeon. 2005. Molecular cloning and expression analysis of the cell-wall invertase gene family in rice (Oryza sativa L.). Plant Cell Reporters 24: 225–236.

    Article  CAS  Google Scholar 

  • Chourey, P.S., Q.B. Li, and J. Cevallos-Cevallos. 2012. Pleiotropy and its dissection through a metabolic gene Miniature1 (Mn1) that encodes a cell wall invertase in developing seeds of maize. Plant Science 184: 45–53.

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro, G.M., G.O. Taylor, and R.J. Henry. 2002. Characterisation of microsatellite markers from sugarcane (Saccharum sp.), a highly polyploid species. Plant Science 155: 161–168.

    Article  Google Scholar 

  • Daraselia, N.D., S. Tarchevskaya, and J.O. Narita. 1996. The promoter for tomato 3-hydroxy-3-methylglutaryl coenzyme A reductase gene 2 has unusual regulatory elements that direct high-level expression. Plant Physiology 112: 727–733.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demeke, T., and C.F. Moris. 2002. Molecular characterization of wheat polyphenol oxidase (PPO). Theoretical and Applied Genetics 104: 813–818.

    Article  CAS  PubMed  Google Scholar 

  • Essmann, J., I.J. Thom, H. Schön, S. Sonnewald, E. Weis, and J. Scharte. 2008. RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco. Plant Physiology 147: 1288–1299.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayes M.A., A. Feechan, and I.B. Dry. 2010. Involvement of abscisic acid in the coordinated regulation of a stress-inducible hexose transporter (VvHT5) and a cell wall invertase in grapevine in response to biotrophic fungal infection. Plant Physiology 153: 211–221.

  • Heyer, A.G., M. Raap, B. Schroeer, B. Marty, and L. Willmitzer. 2004. Cell wall invertase expression at the apical meristem alters floral, architectural, and reproductive traits in Arabidopsis thaliana. Plant Journal 39: 161–169.

    Article  CAS  PubMed  Google Scholar 

  • Kang, B.H., Y.Q. Xiong, D.S. Williams, D.P. Romero, and P.S. Chourey. 2009. Miniature1-encoded cell wall invertase is essential for assembly and function of wall-in-growth in the maize endosperm transfer cell. Plant Physiology 151: 1366–1376.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, J.Y., A. Mahé, S. Guy, J. Brangeon, O. Roche, P.S. Chourey, and J.L. Prioul. 2000. Characterization of two members of the maize gene family, Incw3 and Incw4, encoding cell-wall invertases. Gene 245: 89–102.

    Article  CAS  PubMed  Google Scholar 

  • Kocal, N., U. Sonnewald, and S. Sonnewald. 2008. Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria. Plant Physiology 48: 1523–1536.

    Article  Google Scholar 

  • Komarnytsky, S., and N. Borisjuk. 2003. Functional analysis of promoter elements in plants. Genetic Engineering 25: 113–141.

    Article  CAS  PubMed  Google Scholar 

  • Lalanne, Z.T., and M. Kreis. 1998. Expression of the Arabidopsis thaliana invertase gene family. Planta 207: 259–265.

    Article  Google Scholar 

  • Lammens, W., K. Le Roy, A. Van Laere, A. Rabijns, and W. Van de Ende. 2008. Crystal structures of Arabidopsis thaliana cell-wall invertase mutants in complex with sucrose. Journal of Molecular Biology 377: 378–385.

    Article  CAS  PubMed  Google Scholar 

  • Lammens, W., K. Le Roy, L. Schroeven, A. Van Laere, A. Rabijins, and W. Van den Ende. 2009. Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications. Journal of Experimental Botany 60: 727–740.

    Article  CAS  PubMed  Google Scholar 

  • Le Roy, K., W. Lammens, M. Verhaest, B. De Coninck, A. Rabijns, A. Van Laere, and W. Van den Ende. 2007. Unraveling the difference between invertases and fructan exohydrolases: a single amino acid (Asp-239) substitution transforms Arabidopsis cell wall invertase1 into a fructan 1-exohydrolase. Plant Physiology 145: 616–625.

    Article  PubMed Central  PubMed  Google Scholar 

  • Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Niu, J.Q., A.Q. Wang, J.L. Huang, H. Zhu, Y.R. Li, and L.T. Yang. 2013. Cloning and expression analysis of a soluble acid invertase gene (SoSAI1) of sugarcane. Scientia Agricultura Sinica 24: 5248–5260.

    Google Scholar 

  • Ohyama, A., S. Nishimura, and M. Hirai. 1998. Cloning of cDNA for a cell wall-bound acid invertase from tomato (Lycopersicon esculentum) and expression of soluble and cell wall-bound invertases in plants and wounded leaves of L. esculentum and L. peruvianum. Genetic Engineering 73: 149–157.

    CAS  Google Scholar 

  • Oliver, S.N., J.T. Van Dongen, S.C. Alfred, E.A. Mamun, X.C. Zhao, H.S. Saini, S.F. Fernandes, C.L. Blanchard, B.J. Sutton, P. Geigenberger, E.S. Dennis, and R. Dolferus. 2005. Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant, Cell and Environment 28: 1534–1551.

    Article  CAS  Google Scholar 

  • Pagny, S., L.A.D. Ouisse, V. Gomord, and L. Faye. 2003. Fusion with HDEL protects cell wall invertase from early degradation when n-glycosylation is inhibited. Plant and Cell Physiology 2: 173–182.

    Article  Google Scholar 

  • Perera, M.F., M.E. Arias, D. Costilla, A.C. Luque, M.B. García, M.P. Filippone, M.I. Cuenya, and A.P. Castagnaro. 2012. Genetic diversity assessment and genotype identification in sugarcane based on DNA markers and morphological traits. Euphytica 185: 491–510.

    Article  Google Scholar 

  • Rae, A.L., R.E. Casu, J.M. Perroux, M.A. Jackson, and C.P.L. Grof. 2011. A soluble acid invertase is directed to the vacuole by a signal anchor mechanism. Journal of Plant Physiology 168: 983–989.

    Article  CAS  PubMed  Google Scholar 

  • Roitsch, T., and M.C. González. 2004. Function and regulation of plant invertases: Sweet sensations. Trends in Plant Science 2: 606–613.

    Article  Google Scholar 

  • Ruhlmann, J.M., B.W. Kram, and C.J. Carter. 2010. Cell wall invertase 4 is required for nectar production in Arabidopsis. Journal of Experimental Botany 2: 395–404.

    Article  Google Scholar 

  • Schroeven, L., W. Lammens, A. Van Laere, and W. Van de Ende. 2008. Transforming wheat vacuolar invertase into a high affinity sucrose: sucrose 1-fructosyltransferase. New Phytologist 180: 822–831.

    Article  CAS  PubMed  Google Scholar 

  • Schweinichen, C.V., and M. Büttner. 2005. Expression of a plant cell wall invertase in roots of Arabidopsis leads to early flowering and an increase in whole plant biomass. Plant Biology 7: 469–475.

    Article  Google Scholar 

  • Seo, Y.S., J.I. Cho, S.K. Lee, H.S. Ryu, M. Han, T.R. Hahn, U. Sonnewald, and J.S. Jeon. 2007. Current insights into the primary carbon flux that occurs in plants undergoing a defense response. Plant Stress 1: 42–49.

    Google Scholar 

  • Shaker, S., R.W. Salazar, E.W. Taliercio, and P.S. Chourey. 1995. Cloning and characterization of full-length cDNA encoding cell-wall invertase from maize. Plant Physiology 108: 873–874.

    Article  Google Scholar 

  • Sherson, S.M., H.L. Alford, S.M. Forbes, G. Wallace, and S.M. Smith. 2003. Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. Journal of Experimental Botany 382: 525–531.

    Article  Google Scholar 

  • Siebert, P.D., A. Chenchik, D.E. Kellogg, K.A. Lukyanov, and S.A. Lukyanov. 1995. An improved PCR method for walking in uncloned genomic DNA. Nuclear Acid Research 6: 1087–1088.

    Article  Google Scholar 

  • Sturm, A. 1999. Invertases: Primary structures, functions and roles in plant development and sucrose partitioning. Plant Physiology 121: l–7.

    Article  Google Scholar 

  • Tang, G.Q., M. Lüscher, and A. Sturma. 1999. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 11: 177–189.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang, X., H.P. Ruffner, J.D. Scholes, and S.A. Rolfe. 1996. Purification and characterization of soluble invertases from leaves of Arabidopsis thaliana. Planta 198: 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.

    Article  CAS  PubMed  Google Scholar 

  • Unger, C., M. Hardegger, S. Lienhard, and A. Sturm. 1994. cDNA cloning of carrot (Daucus carota) soluble acid-fructofuranosidase and comparison with the cell wall isozyme. Plant Physiology 104: 1351–1357.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verhaest, M., W. Lammens, K. Le Roy, B. De Coninck, C.J. De Ranter, A. Van Laere, W. Van den Ende, and A. Rabijns. 2006. X-ray diffraction structure of a cell-wall invertase from Arabidopsis thaliana. Acta Crystallographica Section D: Biological Crystallography 62: 1555–1563.

    Article  CAS  Google Scholar 

  • Verhaest, M., K. Le Roy, S. Sansen, B. De Coninck, W. Lammens, C.J. De Ranter, A. Van Laere, W. Van den Ende, and A. Rabijns. 2005. Crystallization and preliminary X-ray diffraction study of a cell-wall invertase from Arabidopsis thaliana. Acta Crystallographica Section F-Structural Biology 61: 766–768.

    Article  CAS  Google Scholar 

  • Wang, E., J.J. Wang, X.D. Zhu, W. Hao, L.Y. Wang, Q. Li, L.X. Zhang, W. He, B.R. Lu, H.X. Lin, H. Ma, G.G. Zhang, and Z.H. He. 2008. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics 40: 1370–1374.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., and Y.L. Ruan. 2012. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton. Plant Physiology 160: 777–787.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This present study was supported by the grants from the National High Technology Research and Development Program (“863” Program) of China (2013AA102604), International Scientific Cooperation Program of China (2013DFA31600), Guangxi Special Funds for Bagui Scholars’s and Distinguished Experts, and Guangxi Natural Science Fund (2011GXNSFF018002, 2013NXNSFAA019073).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Tao Yang or Yang-Rui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, JQ., Wang, AQ., Huang, JL. et al. Isolation, Characterization and Promoter Analysis of Cell Wall Invertase Gene SoCIN1 from Sugarcane (Saccharum spp.). Sugar Tech 17, 65–76 (2015). https://doi.org/10.1007/s12355-014-0348-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-014-0348-8

Keywords

Navigation