Skip to main content
Log in

A Review on the Complete Utilization of the Sugarbeet

  • Review Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The Sugarbeet is one of the main sugar crops in the world. In the search for sustainability and economic value, the complete utilization of the crop is necessary. In addition to sugar and animal feed, sugarbeets can provide many value-added co-products for biofuels, human nutrition, plastics, and pharmaceuticals. Current research efforts are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alamzan, O., L. Gonzalez, L. Galvez. 1998. The sugar cane: Its by-products and co-products. In Réduit, Mauritius: Food and Agricultural Research Council, xiii–xxv.

  • Altundogan, H.S., N. Bahar, B. Mujde, and F. Tumen. 2007. The use of sulphuric acid-carbonization products of sugar beet pulp in Cr(VI) removal. Journal of Hazardous Materials 144: 255–264.

    Article  PubMed  CAS  Google Scholar 

  • Angulo, C., R. Rotter, R. Lock, A. Enders, S. Fronzek, and F. Ewert. 2013. Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agricultural and Forest Meteorology 170: 32–46.

    Article  Google Scholar 

  • Basu, P. 2013. Biomass gasification, pyrolysis and torrefaction, 2nd ed. Boston: Academic Press.

    Google Scholar 

  • Biancardi, E., J.M. McGrath, L.W. Panella, R.T. Lewellen, and P. Stevanato. 2010. Sugar Beet. In Root and tuber crops, ed. J.E. Bradshaw, 173–219. New York: Springer.

    Chapter  Google Scholar 

  • Bonnin, E., H. Grange, L. Lesage-Meessen, M. Asther, and J.F. Thibault. 2000. Enzymic release of cellobiose from sugar beet pulp, and its use to favour vanillin production in Pycnoporus cinnabarinus from vanillic acid. Carbohydrate Polymers 41: 143–151.

    Article  CAS  Google Scholar 

  • Broughton, N.W., C.C. Dalton, G.C. Jones, and E.L. Williams. 1975. Adding value to sugar beet pulp. International Sugar Journal 97: 57–60.

    Google Scholar 

  • Buchweitz, M., A. Nagel, R. Carle, and D.R. Kammerer. 2012. Characterisation of sugar beet pectin fractions providing enhanced stability of anthocyanin-based natural blue food colourants. Food Chemistry 132: 1971–1979.

    Article  CAS  Google Scholar 

  • Caqueret, V., S. Bostyn, B. Cagnon, and H. Fauduet. 2008. Purification of sugar beet vinasse—Adsorption of polyphenolic and dark colored compounds on different commercial activated carbons. Bioresource Technology 99: 5814–5821.

    Article  PubMed  CAS  Google Scholar 

  • Castilho, L.R., D.A. Mitchell, and D.M.G. Freire. 2009. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresource Technology 100: 5996–6009.

    Article  PubMed  CAS  Google Scholar 

  • Cattanach, A.W., A.G. Dexter, and E.S. Oplinger. 1991. Sugarbeets. In Alternative field crops manual, ed. Alternative Field Crops Manual. Madison: University of Wisconsin Cooperative Extension.

    Google Scholar 

  • Chen, F., L. Liu, P.H. Cooke, K.B. Hicks, and J. Zhang. 2008. Performance enhancement of poly(lactic acid) and sugar beet pulp composites by improving interfacial adhesion and penetration. Industrial and Engineering Chemistry Research 47: 8667–8675.

    Article  CAS  Google Scholar 

  • Cho, S.S., and P. Samuel. 2009. Fiber ingredients: Food applications and health benefits. Florence: Taylor & Francis.

    Book  Google Scholar 

  • Cho, S.S. 2001. Handbook of dietary fiber. New York: CRC Press.

    Google Scholar 

  • Concha-Olmos, J., and M.E. Zuniga-Hansen. 2012. Enzymatic depolymerization of sugar beet pulp: Production and characterization of pectin and pectic-oligosaccharides as a potential source for functional carbohydrates. Chemical Engineering Journal 192: 29–36.

    Article  CAS  Google Scholar 

  • Cooke, D.A., and R.K. Scott. 1993. The sugar beet crop: Science into practice. New York: Chapman & Hall.

    Book  Google Scholar 

  • Demiral, H., and G. Gunduzoglu. 2010. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresource Technology 101: 1675–1680.

    Article  PubMed  CAS  Google Scholar 

  • Dhingra, D., M. Michael, R. Hradesh, and R.P. Patil. 2012. Dietary fibre in foods: a review. Journal of Food Science Technology 49: 255–266.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dinand, E., H. Chanzy, and R.M. Vignon. 1999. Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids 13: 275–283.

    Article  CAS  Google Scholar 

  • Draycott, A.P. 2006. Sugar Beet. London: Blackwell (Wiley).

    Book  Google Scholar 

  • Dronnet, V.M., M.A.V. Axelos, C.M.G.C. Renard, and J.F. Thibault. 1998. Improvement of the binding capacity of metal cations by sugar-beet pulp. 1. Impact of cross-linking treatments on composition, hydration and binding properties. Carbohydrate Polymers 35: 29–37.

    Article  CAS  Google Scholar 

  • Dufresne, A., J.Y. Cavaille, and M.R. Vignon. 1997. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. Journal of Applied Polymer Science 64: 1185–1194.

    Article  CAS  Google Scholar 

  • Fadel, J.G., E.J. Depeters, and A. Arosemena. 2000. Composition and digestibility of beet pulp with and without molasses and dried using three methods. Animal Feed Science and Technology 85: 121–129.

    Article  CAS  Google Scholar 

  • Fantozzi, P. 1990. What is the future of leaf-protein in human nutrition? Italian Journal of Food Science 11: 3–8.

    Google Scholar 

  • Finkenstadt, V.L., C.K. Liu, P.H. Cooke, L.S. Liu, and J.L. Willett. 2008. Mechanical property characterization of plasticized sugar beet pulp and poly(lactic acid) green composites using acoustic emission and confocal microscopy. Journal of Polymers and the Environment 16: 19–26.

    Article  CAS  Google Scholar 

  • Fiserova, M., J. Gigac, and R. Butas. 2007. Influence of sugar beet pulp on bond strength and structure of paper. Wood Research 52: 59–74.

    CAS  Google Scholar 

  • Fishman, M.L., H.K. Chau, D.R. Coffin, P.H. Cooke, P. Qi, M.P. Yadav, and J. Hotchkiss. 2011. Physico-chemical characterization of a cellulosic fraction from sugar beet pulp. Cellulose 18: 787–801.

    Article  CAS  Google Scholar 

  • Fishman, M.L., H.K. Chau, P.H. Cooke, M.P. Yadav, and A.T. Hotchkiss. 2009. Physico-chemical characterization of alkaline soluble polysaccharides from sugar beet pulp. Food Hydrocolloids 23: 1554–1562.

    Article  CAS  Google Scholar 

  • Fishman, M.L., H.K. Chau, P.X. Qi, J. Hotchkiss, and M.P. Yadav. 2013. Physico-chemical characterization of protein-associated polysaccharides extracted from sugar beet pulp. Carbohydrate Polymers 92: 2257–2266.

    Article  PubMed  CAS  Google Scholar 

  • Gerbens-Leenes, W., and A.Y. Hoekstra. 2012. The water footprint of sweeteners and bio-ethanol. Environment International 40: 202–211.

    Article  PubMed  CAS  Google Scholar 

  • Gigac, J., M. Fsíerova, and M. Rosenberg. 2008. Improvement of paper strength via surface application of sugar beet pectin. Chemical Papers 62: 509–515.

    Article  CAS  Google Scholar 

  • Goodban, A.F., and H.S. Owens. 1956. Isolation and properties of sugar beet araban. Journal of Sugar Beet Research IX: 129–132.

    Article  Google Scholar 

  • Guru, M., A.Y. Bilgesu, and V. Pamuk. 2001. Production of oxalic acid from sugar beet molasses by formed nitrogen oxides. Bioresource Technology 77: 81–86.

    Article  PubMed  CAS  Google Scholar 

  • Hartnell, G.F., T. Hvelplund, and M.R. Weisbjerg. 2005. Nutrient digestibility in sheep fed diets containing Roundup Ready or conventional fodder beet, sugar beet, and beet pulp. Journal of Animal Science 83: 400–407.

    PubMed  CAS  Google Scholar 

  • Hood, E., Teoh, K., Devaiah, S., and Vicuna Requesens, D. 2013. Biomass crops for biofuels and bio-based products. In Sustainable food production (eds. P. Christou, R. Savin, B. Costa-Pierce, I. Misztal, and C. B. Whitelaw), 250–279. New York: Springer.

  • Iconomou, D., K. Kandylis, C. Israilides, and P. Nikokyris. 1998. Protein enhancement of sugar beet pulp by fermentation and estimation of protein degradability in the rumen of sheep. Small Ruminant Research 27: 55–61.

    Article  Google Scholar 

  • Jodidi, S.L. 1911. The Sugar beet and beet sugar. Chicago: Beet Sugar Gazette Company.

    Google Scholar 

  • Jwanny, E.W., L. Montanari, and P. Fantozzi. 1993. Protein production for human use from Sugarbeet: Byproducts. Bioresource Technology 43: 67–70.

    Article  CAS  Google Scholar 

  • Kawa-Rygielska, J., W. Pietrzak, P. Regiec, and P. Stencel. 2013. Utilization of concentrate after membrane filtration of sugar beet thin juice for ethanol production. Bioresource Technology 133: 134–141.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, P. 1983. Sugar beet pulp—a review. Animal Feed Science and Technology 8: 1–18.

    Article  Google Scholar 

  • Kirby, A.R., A.J. MacDougall, and V.J. Morris. 2006. Sugar beet pectin-protein complexes. Food Biophysics 1: 51–56.

    Article  Google Scholar 

  • Kolodynska, D., R. Wnetrzak, J.J. Leahy, M.H.B. Hayes, W. Kwapinski, and Z. Hubicki. 2012. Kinetic and adsorptive characterization of biochar in metal ions removal. Chemical Engineering Journal 197: 295–305.

    Article  CAS  Google Scholar 

  • Krajnc, D., M. Mele, and P. Glavic. 2007. Improving the economic and environmental performances of the beet sugar industry in Slovenia: increasing fuel efficiency and using by-products for ethanol. Journal of Cleaner Production 15: 1240–1252.

    Article  Google Scholar 

  • Kroon, P. A., Faulds, C. B., Brezillon, C., and Williamson, G. 1996. Enzymic release of ferulic acid from sugar beet pulp using a specific esterase from Aspergillus niger. In Progress in Biotechnology Pectins and Pectinases Proceedings of an International Symposium (ed. J. Visser), 761–768. Amsterdam: Elsevier.

  • Kuhnel, S., H.A. Schols, and H. Gruppen. 2011. Aiming for the complete utilization of sugar-beet pulp: Examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion. Biotechnology for Biofuels 4: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Langeveld, H. 2010. The Biobased Economy: Biofuels, Materials and Chemicals in the Post-oil Era. London: Earthscan Ltd.

    Google Scholar 

  • Leijdekkers, A.G.M., J.P.M. Bink, S. Geutjes, H.A. Schols, and H. Gruppen. 2013. Enzymatic saccharification of sugar beet pulp for the production of galacturonic acid and arabinose; a study on the impact of the formation of recalcitrant oligosaccharides. Bioresource Technology 128: 518–525.

    Article  PubMed  CAS  Google Scholar 

  • Leitner, J., B. Hinterstoisser, M. Wastyn, J. Keckes, and W. Gindl. 2007. Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14: 419–425.

    Article  CAS  Google Scholar 

  • Leontowicz, M., S. Gorinstein, E. Bartnikowska, H. Leontowicz, G. Kulasek, and S. Trakhtenberg. 2001. Sugar beet pulp and apple pomace dietary fibers improve lipid metabolism in rats fed cholesterol. Food Chemistry 72: 73–78.

    Article  CAS  Google Scholar 

  • Li, W., D.R. Coffin, T.Z. Jin, N. Latona, C.K. Liu, B. Liu, J. Zhang, and L. Liu. 2012. Biodegradable composites from polyester and sugar beet pulp with antimicrobial coating for food packaging. Journal of Applied Polymer Science 126: E361–E372.

    Google Scholar 

  • Liang, S., M. Xu, and T. Zhang. 2012. Unintended consequences of bioethanol feedstock choice in China. Bioresource Technology 125: 312–317.

    Article  PubMed  CAS  Google Scholar 

  • Liu, B., S. Bhaladhare, P. Zhan, L. Jiang, J. Zhang, L. Liu, and A.T. Hotchkiss. 2011a. Morphology and properties of thermoplastic sugar beet pulp and poly(butylene adipate-co-terepthalate) blends. Industrial and Engineering Chemistry Research 50: 13859–13865.

    Article  CAS  Google Scholar 

  • Liu, B., J. Zhang, L. Liu, and A.T. Hotchkiss. 2011b. Preparation and properties of water and glycerol-plasticized sugar beet pulp plastics. Journal of Polymers and the Environment 19: 559–567.

    Article  CAS  Google Scholar 

  • Liu, B., J. Zhang, L. Liu, and A.T. Hotchkiss. 2012. Utilization of pectin extracted sugar beet pulp for composite application. Journal of Biobased Materials and Bioenergy 6: 185–192.

    Article  CAS  Google Scholar 

  • Liu, L.S., V.L. Finkenstadt, C. Liu, T. Jin, M.L. Fishman, and K.B. Hicks. 2007. Preparation of poly (lactic acid) and pectin composite films intended for applications in antimicrobial packaging. Journal of Applied Polymer Science 106: 801–810.

    Article  CAS  Google Scholar 

  • Lv, C., Y. Wang, Lj Wang, D. Li, and B. Adhikari. 2013. Optimization of production yield and functional properties of pectin extracted from sugar beet pulp. Carbohydrate Polymers 95: 233–240.

    Article  PubMed  CAS  Google Scholar 

  • Ma, S., Sj Yu, Xl Zheng, Xx Wang, Qd Bao, and Xm Guo. 2013. Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydrate Polymers 98: 750–753.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, M., B. Gullon, H.A. Schols, J.L. Alonso, and J.C. Parajo. 2009. Assessment of the production of oligomeric compounds from sugar beet pulp. Industrial and Engineering Chemistry Research 48: 4681–4687.

    Article  CAS  Google Scholar 

  • McCready, R.M., J.B. Stark, and A.E. Goodban. 1965. Preparation of galactinol and myoinositol from sugar beet sirup by chromatography on a cation exchange resin. Journal of Sugar Beet Research 14: 127–132.

    Article  Google Scholar 

  • Micard, V., C.M.G.C. Renard, and J.F. Thibault. 1997. Influence of pretreatments on enzymic degradation of a cellulose-rich residue from sugar-beet pulp. LWT—Food Science and Technology 30: 284–291.

    CAS  Google Scholar 

  • Michel, F., J.F. Thibault, J.L. Barry, and R. de Baynast. 1988. Preparation and characterisation of dietary fibre from sugar beet pulp. Journal of the Science of Food and Agriculture 42: 77–85.

    Article  CAS  Google Scholar 

  • Mohdaly, A.A., M.A. Sarhan, I. Smetanska, and A. Mahmoud. 2010. Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. Journal of the Science of Food and Agriculture 90: 218–226.

    Article  PubMed  CAS  Google Scholar 

  • Moosavi, A., and A. Karbassi. 2010. Bioconversion of sugar-beet molasses into xanthan gum. Journal of Food Processing and Preservation 34: 316–322.

    Article  CAS  Google Scholar 

  • Mudoga, H.L., H. Yucel, and N.S. Kincal. 2008. Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons. Bioresource Technology 99: 3528–3533.

    Article  PubMed  CAS  Google Scholar 

  • National Agricultural Statistics Service. 2013a. Crop production 2012 summary. Washington, DC: United States Department of Agriculture.

    Google Scholar 

  • National Agricultural Statistics Service. 2013b. Crop value 2012 summary. Washington, DC: United States Department of Agriculture.

    Google Scholar 

  • Nordic Sugar. 2012. GRAS notification for sugar beet fiber. http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm347789.htm. Accessed 20 Oct 2013.

  • Norsker, M., M. Jensen, and J. Adler-Nissen. 2000. Enzymatic gelation of sugar beet pectin in food products. Food Hydrocolloids 14: 237–243.

    Article  CAS  Google Scholar 

  • Oosterveld, A., G. Beldman, and A.G.J. Voragen. 2000. Oxidative cross-linking of pectic polysaccharides from sugar beet pulp. Carbohydrate Research 328: 199–207.

    Article  PubMed  CAS  Google Scholar 

  • Panella, L. 2010. Sugar beet as an energy crop. Sugar Tech 12: 288–293.

    Article  CAS  Google Scholar 

  • Pavier, C., and A. Gandini. 2000. Oxypropylation of sugar beet pulp. 1. Optimisation of the reaction. Industrial Crops and Products 12: 1–8.

    Article  CAS  Google Scholar 

  • Polematidis, I., A. Koppar, and P. Pullammanappallil. 2010. Biogasification potential of desugarized molasses from Sugarbeet processing plants. Journal of Sugar Beet Research 47: 89–104.

    Article  Google Scholar 

  • Ralet, M.-C., Guillon, F., Renard, C., and Thibault, J. F. 2009. Sugar beet fiber: Production, characteristics, food applications and physiological benefits. In Fiber ingredients: Food applications and health Benefits (eds. S. S. Cho and P. Samuel). Florence: Taylor & Francis.

  • Reineke, H., N. Stockfisch, and B. Marlander. 2013. Analysing the energy balances of sugar beet cultivation in commercial farms in Germany. European Journal of Agronomy 45: 27–38.

    Article  Google Scholar 

  • Reziç, T., D. Oros, I. Markoviç, D. Kracher, R. Ludwig, and B. Santek. 2013. Integrated hydrolysation and fermentation of the sugar beet pulp to bioethanol. Journal of Microbiology and Biotechnology 23: 1244–1252.

    Article  PubMed  Google Scholar 

  • Rouilly, A., C. Geneau-Sbarta, and L. Rigal. 2009. Thermo-mechanical processing of sugar beet pulp. III. Study of extruded films improvement with various plasticizers and cross-linkers. Bioresource Technology 100: 3076–3081.

    Article  PubMed  CAS  Google Scholar 

  • Rouilly, A., J. Jorda, and L. Rigal. 2006. Thermo-mechanical processing of sugar beet pulp. I. Twin-screw extrusion process. Carbohydrate Polymers 66: 81–87.

    Google Scholar 

  • Salazar-Ordonez, M., P.P. Perez-Hernandez, and J.M. Martin-Lozano. 2013. Sugar beet for bioethanol production: An approach based on environmental agricultural outputs. Energy Policy 55: 662–668.

    Article  CAS  Google Scholar 

  • Santek, B., G. Gwehenberger, M.I. Santek, M. Narodoslawsky, and P. Horvat. 2010. Evaluation of energy demand and the sustainability of different bioethanol production processes from sugar beet. Resources, Conservation and Recycling 54: 872–877.

    Article  Google Scholar 

  • Soto, M.L., A. Moure, H. Dominguez, and J.C. Paraja. 2011. Recovery, concentration and purification of phenolic compounds by adsorption: A review. Journal of Food Engineering 105: 1–27.

    Article  CAS  Google Scholar 

  • Steg, A., and J.M. Van Der Meer. 1985. Differences in chemical composition and digestibility of beet and cane molasses. Animal Feed Science and Technology 13: 83–91.

    Article  CAS  Google Scholar 

  • Stevanato, P., and L.W. Panella. 2013. History of Sugarbeets, 17–21. Idaho Falls: Sugar Producer Magazine.

    Google Scholar 

  • Sud, D., G. Mahajan, and M.P. Kaur. 2008. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—A review. Bioresource Technology 99: 6017–6027.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, M.D., and J.B. Doran-Peterson. 2001. Fermentation of sugarbeet pulp for ethanol production using bioengineered Klebsiella oxytoca strain P2. Journal of Sugar Beet Research 38: 19–34.

    Google Scholar 

  • Tamimi, M.A., R.J. Palframan, J.M. Cooper, G.R. Gibson, and R.A. Rastall. 2006. In vitro fermentation of sugar beet arabinan and arabino-oligosaccharides by the human gut microflora. Journal of Applied Microbiology 100: 407–414.

    Article  Google Scholar 

  • Teimouri Yansari, A. 2013 Physically effectiveness of beet pulp-based diets in dairy cows as assessed by responses of feed intake, digestibility, chewing activity and milk production. Journal of Animal Physiology and Animal Nutrition (in press).

  • The Sugar Association. 2013. Refining and processing sugar. http://www.sugar.org/images/docs/refining-and-processing-sugar.pdf Accessed 20 Aug 2013.

  • Tian, Z., D. Chauliac, and P. Pullammanappallil. 2013. Comparison of non-agitated and agitated batch, thermophilic anaerobic digestion of Sugarbeet tailings. Bioresource Technology 129: 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Togrul, H., and N. Arslan. 2003. Flow properties of sugar beet pulp cellulose and intrinsic viscosity—molecular weight relationship. Carbohydrate Polymers 54: 63–71.

    Article  CAS  Google Scholar 

  • Togrul, H., and N. Arslan. 2004. Extending shelf-life of peach and pear by using CMC from sugar beet pulp cellulose as a hydrophilic polymer in emulsions. Food Hydrocolloids 18: 215–226.

    Article  CAS  Google Scholar 

  • Van Dyk, J.S., R. Gama, D. Morrison, S. Swart, and B.I. Pletschke. 2013. Food processing waste: Problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation. Renewable and Sustainable Energy Reviews 26: 521–531.

    Article  Google Scholar 

  • Vucuroviç, D.G., S.N. Dodiç, S.D. Popov, J.M. Dodiç, and J.A. Grahovac. 2012. Process model and economic analysis of ethanol production from sugar beet raw juice as part of the cleaner production concept. Bioresource Technology 104: 367–372.

    Article  PubMed  Google Scholar 

  • Vucuroviç, V.M., and R.N. Razmovski. 2012. Sugar beet pulp as support for Saccharomyces cerivisiae immobilization in bioethanol production. Industrial Crops and Products 39: 128–134.

    Article  Google Scholar 

  • Wang, B., R.R. Sharma-Shivappa, J.W. Olson, and S.A. Khan. 2013. Production of polyhydroxybutyrate (PHB) by Alcaligenes latus using Sugarbeet juice. Industrial Crops and Products 43: 802–811.

    Google Scholar 

  • Wei, Y.A., and Y.R. Li. 2006. Status and trends of sugar industry in China. Sugar Tech 8: 10–15.

    Article  Google Scholar 

  • Yao, Y., B. Gao, M. Inyang, A.R. Zimmerman, X. Cao, P. Pullammanappallil, and L. Yang. 2011. Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresource Technology 102: 6273–6278.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Y., C. Yu, Y.S. Cheng, C. Lee, C.W. Simmons, T.M. Dooley, R. Zhang, B.M. Jenkins, and J.S. VanderGheynst. 2012. Integrating sugar beet pulp storage, hydrolysis and fermentation for fuel ethanol production. Applied Energy 93: 168–175.

    Article  CAS  Google Scholar 

  • Zieminski, K., I. Romanowska, and M. Kowalska. 2012. Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Management 32: 1131–1137.

    Article  PubMed  CAS  Google Scholar 

  • Zijlstra, R. T. and Beltranena, E. 2013. Alternative feedstuffs in swine diets. In Sustainable swine nutrition, 229–253. Oxford: Blackwell.

Download references

Acknowledgments

Ms. Sara Lee, Special Collections Librarian, at the National Agricultural Library (Beltsville, MD), was invaluable in tracking down historical documents from the National Archives. The author would like to thank Ms. Marcia Wood, Public Affairs Specialist, on the ARS Information Staff (Beltsville, MD), for the inspiration to write this review.

Disclosure

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria L. Finkenstadt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkenstadt, V.L. A Review on the Complete Utilization of the Sugarbeet. Sugar Tech 16, 339–346 (2014). https://doi.org/10.1007/s12355-013-0285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-013-0285-y

Keywords

Navigation