Skip to main content
Log in

Osmolytes Accumulation, Cell Membrane Integrity, and Antioxidant Enzymes in Sugarcane Varieties Differing in Salinity Tolerance

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Osmolyte accumulation (proline and glycine–betaine), chlorophyll content, nitrate reductase (NR) activity and antioxidative system in terms of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and malondialdehyde content was studied in two sugarcane varieties (CoM-265 and CoC-671) differing in salt tolerance. The result clearly indicated higher level of osmolytes like proline and glycine–betaine in CoM-265, a salt tolerant variety. The reduction in chlorophyll content and NR activity was less in salt tolerant sugarcane variety CoM-265 than that of CoC-671, a salt susceptible variety. Higher activity of SOD, APX and CAT with lower LPO content in salt tolerant (CoM-265) variety compared to salt susceptible (CoC-671) variety, suggests that antioxidant enzymes protect cell from oxidative burst. Proline and glycine–betaine protect cell membrane integrity by maintaining higher chlorophyll and NR activity by scavenging ROS under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SOD:

Superoxide dismutase

APX:

Ascorbate peroxidase

MDA:

Malondialdehyde

NBT:

Nitro blue tetrazolium

TBA:

Thiobarbituric acid

ROS:

Reactive oxygen species

NRA:

Nitrate reductase

LPO:

Lipid peroxidation

References

  • Andersson, I. 2008. Catalysis and regulation in rubisco. Journal of Experimental Botany 59: 1555–1568.

    Article  CAS  PubMed  Google Scholar 

  • Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24: 1–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arzani, A. 2008. Improving salinity tolerance in crop plants: A biotechnological view, in vitro cell development. Biologia Plantarum 44: 373–383.

    CAS  Google Scholar 

  • Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their function. Plant Physiology 14: 391–396.

    Article  Google Scholar 

  • Ashraf, M., and M.R. Foolad. 2005. Pre-sowing seed treatment a shotgun approach to improve germination plant growth and crop yield under saline and non-saline conditions. Advances in Agronomy 88: 223–271.

    Google Scholar 

  • Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39: 205–207.

    Article  CAS  Google Scholar 

  • Beauchamp, C., and I. Fridovich. 1971. Superoxide dismutase: Improved assay and assay applicable to acrylamide gels. Analytical Biochemistry 44: 276–287.

    Article  CAS  PubMed  Google Scholar 

  • Datta, J.K., S. Nag, A. Banerjee, and N.K. Mondal. 2009. Impact of salt stress on five varieties of wheat (Triticum aestivum L.) cultivars under laboratory condition. Journal of Application of Science Environment Management 13(3): 93–97.

    Google Scholar 

  • Debouba, M., H. Gouia, A. Suzuki, and M.H. Ghorbel. 2006. NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato Lycopersicon esculentum seedlings. Journal of Plant Physiology 163: 1247–1258.

    Article  CAS  PubMed  Google Scholar 

  • Debouba, M., H. Maaroufi-Dghimi, A. Suzuki, M.H. Ghorbel, and H. Gouia. 2007. Changes in growth and activity of enzymes involved in nitrogen assimilation pathway in tomato seedlings in response to NaCl stress. Annals of Botany 99: 1143–1151.

    Article  CAS  PubMed  Google Scholar 

  • Dermiral, T., and I. Turkan. 2005. Comparative lipid peroxidation, antioxidant defense system and proline content in roots of two-rice cultivars differing in salt tolerance. Environmental and Experimental Botany 53: 247–257.

    Article  Google Scholar 

  • Duan, D.Y., W.Q. Li, X.J. Liu, and H.P. Ouyang. 2007. Seed germination and seedling growth of Suaeda Salsa under salt stress. Annales Botanici Fennici 44: 161–169.

    CAS  Google Scholar 

  • Ehsanzadeh, P., M.S. Nekoonam, J.N. Azhar, H. Pourhadian, and S. Shaydee. 2009. Growth chlorophyll and cation concentration of tetraploid wheat on a solution of high sodium chloride salt: Hulled versus free-threshing genotypes. Journal of Plant Nutrition 32: 58–70.

    Article  CAS  Google Scholar 

  • Foyer, C.H., A.J. Bloom, G. Queval, and G. Noctor. 2009. Photorespiratory metabolism genes, mutants, energetic and redox signaling. Annual Review of Plant Biology 60: 455–484.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C.H., and G. Noctor. 2000. Oxygen processing in photosynthesis: Regulation and signaling. New Phytologist 146: 359–388.

    Article  CAS  Google Scholar 

  • Ghoulam, C., F. Ahmed, and F. Khalid. 2001. Effect of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany 47: 139–150.

    Google Scholar 

  • Gomathi, R., and P. Rakkiyapan. 2011. Comparative lipid peroxidation, leaf membrane thermostability, and antioxidant system in four sugarcane genotypes differing in salt tolerance. International Journal of Plant Physiology & Biochemistry 3(4): 67–74.

    CAS  Google Scholar 

  • Gomathi, R., G. Manohari, and P. Rakkiyapan. 2012. Antioxidant enzymes on cell membrane integrity of sugarcane varieties differing in flooding tolerance. Sugar Tech 13(3): 261–265.

    Article  Google Scholar 

  • Gomez, J.M., A. Jimenez, E. Olmos, and F. Sevilla. 2004. Location and effect of long term NaCl stress on superoxide dismutase and ascorbate peroxidases isoenzymes of pea (Pisum Sativum cv. Puget) chloroplasts. Journal of Experimental Botany 55: 119–130.

    Google Scholar 

  • Health, R.L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts: I Kinetics and stoichiometry of fatty acid peroxidation. Archives Biochemistry Biophysics 125: 189–198.

    Article  Google Scholar 

  • Kavikishore, P.B., S. Sangam, R.N. Amrutha, P. SriLaxmi, K.R. Naidu, K.R.S. Rao, S. Rao, K.J. Reddy, P. Theriappan, and N. Sreenivasulu. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implication in plant growth and abiotic stress tolerance. Current Science 88: 424–438.

    Google Scholar 

  • Kraus, T.E., B.D. Mckersie, and R.A. Fletcher. 1995. Paclobutrazol induced tolerance of wheat leaves to paraquat may involve increased antioxidant enzyme activity. Journal of Plant Physiology 145: 570–576.

    Article  CAS  Google Scholar 

  • Lowry, O.H., N.J. RoseBrough, A.L. Farn, and R.J. Randal. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265–275.

    CAS  PubMed  Google Scholar 

  • Luck, H. 1974. Estimation of catalase. In Methods in enzymatic analysis, ed. H. Luck, 885. New York: Bergmeyer Academic Press.

  • Meloni, D.A., M.R. Gulota, C.A. Martinez, and M.A. Oliva. 2004. The effect of salt stress on growth, nitrate reduction and proline and glycine betaine accumulation in Prosopis alba. Brazilian Journal of Plant Physiology 16: 39–46.

    Article  CAS  Google Scholar 

  • Miller, G., N. Suzuki, S. Ciftci-Yilmaz, and R. Mittler. 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environment 33: 453–467.

    Article  CAS  Google Scholar 

  • Moller, I.M., P.E. Jensen, and A. Hansson. 2007. Oxidative modification to cellular components in plants. Annual Review Plant Biology 58: 480–481.

    Article  Google Scholar 

  • Naik, R.M., B.S. Kadam, R.P. Pandhare, S.M. Pawar, R.C. Patil, and P.G. Bhoi. 2002. Inheritance of proline accumulation and in vivo nitrate reductase activity in sugarcane leaves under water stress. Indian Sugar 52(9): 427–429.

    Google Scholar 

  • Nakano, Y., and K. Asada. 1998. Hydrogen peroxidase scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiology 22: 867–880.

    Google Scholar 

  • Pandey, U.K., and R.D.L. Srivastava. 1989. Salinity index in relation to nitrate reductase activity and proline accumulation in paddy genotype. Indian Journal of Plant Physiology 32(2): 175–177.

    Google Scholar 

  • Patade, V.Y., P. Suprasanna, and V.A. Bapat. 2008. Effect of salt stress in relation to osmotic adjustment on sugarcane (Saccharum officinarum L.) callus cultures. Plant Growth Regulation 55(3): 169–173.

    Article  CAS  Google Scholar 

  • Plaut, Z. 1974. Nitrate reductase activity in wheat seedlings during exposure to and recovery from water stress and salinity. Physiologia Plantarum 30: 212–217.

    Article  CAS  Google Scholar 

  • Quan, R., M. Shang, H. Zhang, Y. Zhao, and J. Zhang. 2004. Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal 2: 477–486.

    Article  CAS  PubMed  Google Scholar 

  • Sakmato, A., and N. Murata. 2002. The role of glycine betaine in the protection of plants from stress: Clues from transgenic plants. Plant Cell and Environment 25: 163–171.

    Article  Google Scholar 

  • Sairam, R.K., and A. Tyagi. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Science 86: 407–421.

    CAS  Google Scholar 

  • Sawhney, S.K., M.S. Naik, and D.J.D. Nicholas. 1978. Regulation of nitrate reductase by light ATP and mitochondrial respiration in wheat leaves. Nature 272: 647–648.

    Article  CAS  Google Scholar 

  • Sekmen, A.H., I. Turkan, and S. Takio. 2007. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt tolerant Plantago maritime and salt sensitive Plantago media. Physiologia Plantarum 131: 399–411.

    Article  CAS  PubMed  Google Scholar 

  • Shigeoka, S., T. Ishikawa, M. Tamoi, Y. Miyagawa, T. Takeda, Y. Yabuta, and Y. Yoshimura. 2002. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany 53: 1305–1319.

    Article  CAS  PubMed  Google Scholar 

  • Stumpf, D.K. 1984. Quantification and purification of quaternary ammonium compounds from halophyte tissue. Plant Physiology 75: 273–274.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taishi, V., S. Katsuyoshi, K. Morino, and Takao. 2000. Enhancement of salt tolerance in soybean with NaCl pretreatment. Physiologia Plantarum 110: 59–63.

    Article  Google Scholar 

  • Tijen, D., and T. Ismail. 2005. Comparative lipid peroxidation, antioxidant defense system and proline content in roots of two rice cultivars differing in salt tolerance. Journal of Environmental & Experimental Botany 53: 247–257.

    Article  Google Scholar 

  • Vasantha, S., and R. Rajalakshmi. 2009. Progressive changes in biochemical character of sugarcane genotypes under salinity stress. Indian Journal Plant Physiology 14: 34–38.

    CAS  Google Scholar 

  • Vasantha, S., P.S. Gururaja Rao, S. Venkataramana, and R. Gomathi. 2008. Salinity-induced changes in the antioxidant response of sugarcane genotypes. Journal of Plant Biology 35(2): 115–119.

    CAS  Google Scholar 

  • Wang, R., R. Tischner, A.G. Rodrigo, M. Hoffman, X. Xing, M. Chen, G. Coruzzi, and N.M. Crawford. 2004. Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiology 136: 2512–2522.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Sugarcane Specialist, CSRS, Padegaon under M.P.K.V. Rahuri, Dist-Ahmednagar, Maharashtra, India for supply to sugarcane varieties for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Naik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satbhai, R.D., Naik, R.M. Osmolytes Accumulation, Cell Membrane Integrity, and Antioxidant Enzymes in Sugarcane Varieties Differing in Salinity Tolerance. Sugar Tech 16, 30–35 (2014). https://doi.org/10.1007/s12355-013-0243-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-013-0243-8

Keywords

Navigation