Skip to main content
Log in

Phenotypic and biochemical responses of sugarcane cultivars to glyphosate application

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sugarcane cultivars show varying degrees of herbicide susceptibility, with herbicide effects ranging from no injury to total plant eradication. In this study, phenotypic and biochemical responses to glyphosate were evaluated in three sugarcane cultivars. Herbicide tolerance of the three cultivars (IACSP93-3046, IACSP94-4004 and RB72454) was tested in a greenhouse experiment using a completely randomized design. The experiment consisted of four replications of treatments in a factorial arrangement of 3 cultivars × 6 glyphosate dosages (0, 1,440, 2,160, 2,880, 3,600 and 4,320 g a. e. ha−1). Intoxication symptoms, based on a percentage scale ranging from 0 (no injury) to 100 % (total plant death), and total chlorophyll content were recorded at 1, 2, 3, 6, 7, 10, 20 and 34 days after glyphosate application (DAA). Shikimate dehydrogenase and α-esterase isoenzyme assays were performed at 8, 24, 48, 72 and 144 h after application (HAA). Intoxication symptoms observed at 6 DAA ranged from 5 % at the lowest glyphosate dosage (1,440 g a. e. ha−1) to ~30 % at the highest dosage (4,320 g a. e. ha−1) across all cultivars. IACSP94-4004 and IACSP93-3046 were determined to be the most glyphosate-tolerant cultivars. Reduction in chlorophyll content was observed with high dosages of glyphosate at 6 DAA. The shikimate dehydrogenase banding pattern was generally conserved among cultivars and treatments, with the exception of the IACSP94-4004 cultivar, which showed alterations in the banding pattern of α-esterase after glyphosate application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriano, R.C. 2012. Características fitotécnicas e isoenzimáticas em cana-de-açúcar após a aplicação de glyphosate. Master Dissertation, Campinas: Instituto Agronômico de Campinas.

  • Alfenas, A.C., W. Brune, J.R. Oliveira, S.K. Alonso, and S. Scortichini. 2006. Eletroforese e marcadores bioquímicos em plantas e microrganismos. In Eletroforese e marcadores bioquímicos em plantas e microrganismos, ed. A.C. Alfenas, 85–114. Viçosa: UFV.

    Google Scholar 

  • Almeida, M., and O.J. Crócomo. 1994. Caracterização bioquímica de cultivares de cana-de-açúcar (Saccharum spp.): isoenzimas, proteínas solúveis e valor de brix. Scientia Agrícola 51: 422–429.

    Article  Google Scholar 

  • Duke, S.O., and S.B. Powles. 2008. Glyphosate: a once-in-a-century herbicide. Pest Management Science 64: 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Espironello, A., B. Van Raij, C.P. Penatti, H. Cantarella, J.L. Morelli, J. Orlando Filho, M.G.A. Landell, and R. Rosseto. 1997. Boletim Técnico, 100. In Recomendações de adubação e calagem para o Estado de São Paulo, ed. B. van Raij, H. Cantarella, J.A. Quaggio, and A.M.C. Furlani, 237–239. Campinas: Instituto Agronômico/Fundação IAC.

    Google Scholar 

  • Gallacher, D.J., D.J. Lee, and N. Berding. 1995. Use of isozyme phenotypes for rapid discrimination among sugarcane clones. Australian Journal of Agricultural Research 46: 601–609.

    Article  CAS  Google Scholar 

  • Galli, A. J. B. 2009. A molécula glyphosate e a agricultura brasileira. Glyphosate 439. Botucatu: Fepaf.

  • Green, J.M. 2009. Evolution of glyphosate-resistant. Crop technology. Weed Science 57: 108–117.

    Article  CAS  Google Scholar 

  • Gottlieb, L.D. 1982. Conservation and duplications of isozymes in plants. Science 216: 73–380.

    Article  Google Scholar 

  • Gruys, K.J., and J.A. Sikorski. 1999. Inhibitors of tryptophan, phenylalanine and tyrosine biosynthesis as herbicides. In Plant amino acids: biochemistry and biotechnology, ed. B.K. Singh, 357–384. New York: Marcel Dekker.

    Google Scholar 

  • Glasenapp, J.S. 2007. Estrutura genética e fenóis totais de populações naturais de barbatimão (Stryphnodendron adstringens). Master Dissertation, Viçosa: Universidade Federal de Viçosa.

  • Kitchen, L.M., W.W. Witt, and C.E. Rieck. 1981. Inhibition of chlorophyll accumulation by glyphosate. Weed Science 29: 513–516.

    CAS  Google Scholar 

  • Kruse, N.D., M.T. Michelangelo, and A.V. Vidal. 2000. Herbicidas Inibidores da EPSPs: Revisão de literatura. Revista Brasileira de Herbicidas 1: 139–146.

    Google Scholar 

  • Laemmili, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  Google Scholar 

  • Lorenzi, H. 1983. Pragas da cultura da cana-de-açúcar. Reunião Técnica Agronômica, 59–82. Piracicaba: Anais Copersucar.

    Google Scholar 

  • MAPA–Ministério da Agricultura, Pecuária e Abastecimento. 2012. Instrução Normativa n° 42, www.mapa.gov.br (accessed November 29, 2011).

  • Nilsson, G. 1985. Interactions between glyphosate and metals essential for plant growth. In The herbicide glyphosate, ed. E. Grossbard, and D. Atkinson, 35–47. London: Butterworth.

    Google Scholar 

  • Pasteur, N., G. Pasteur, F. Bonhomme, J. Catalan, and J. Britton-Davidian. 1988. Practical isoenzyme genetics. New York: Ellis Horwood.

    Google Scholar 

  • Pinkard, V.C., V. Patel, and C.L. Mohammed. 2006. Chlorophyll and nitrogen determination for plantation-grown Eucaliptus nitens and E. globulus using a non-destructive meter. Forest Ecology and Management 223: 211–217.

    Article  Google Scholar 

  • Rohlf, F.J. 1993. NTSYS-pc numerical taxonomy and multivariate analysis system, Version 2.0. New York: Exeter Publications.

    Google Scholar 

  • Schönbrunn, E., S. Eschenburg, W.A. Shuttleworth, J.V. Schloss, N. Amrhein, J.N.S. Evans, and W. Kabsch. 2001. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proceedings of the National Academy of Sciences 13: 1376–1380.

    Article  Google Scholar 

  • Roman, E.S., L. Vargas, M.A. Rizzardi, and R.W. Mattei. 2004. Resistência de azevém (Lolium multiflorum) ao herbicida glyphosate. Planta Daninha 22: 301–306.

    Article  Google Scholar 

  • Santos, C.M.R., N.L. Menezes, and F.A. Vilella. 2005. Modificações fisiológicas e bioquímicas em sementes de feijão no armazenamento. Revista Brasileira de Sementes 27: 104–114.

    Google Scholar 

  • Silva, M.A., and R. Rossetto. 2002. Diferenças varietais na eliminação química de soqueiras de cana-de-açúcar. STAB, Açúcar, Álcool e Subprodutos 20: 24–27.

    Google Scholar 

  • Silva, M.D., M.C.R. Peralba, and M.L.T. Mattos. 2003. Determinação de glifosato e ácido aminometilfosfônico em águas superficiais do Arroio Passo do Pilão. Pesticidas: Revista Ecotoxicologia e Meio Ambiente 13: 19–28.

    Google Scholar 

  • Silva, M.A., S.D. Carlin, and M.M. Caputo. 2006. Tipos de colheita e épocas de aplicação de glifosato na erradicação de soqueiras de cana-de-açúcar. Pesquisa Agropecuária Brasileira 41: 43–49.

    Article  Google Scholar 

  • Souza, J.R., D. Perecin, C.A.M. Azania, A.R. Schiavetto, I.V. Pizzo, and L.S. Candido. 2009. Tolerância de cultivares de cana-de-açúcar a herbicidas aplicados em pós-emergência. Bragantia 68: 941–951.

    Article  Google Scholar 

  • Torggler, M.G.F., E.P.B. Contel, and S.P. Torggler. 1995. Isoenzimas, variabilidade genética em plantas. Ribeirão Preto: Sociedade Brasileira de Genética.

    Google Scholar 

  • Tuffi, L.D.S., B.F. San’t Anna-Santos, R.M.S.A. Meira, R.A.S. Tiburcio, F.A. Ferreira, C.A.D. Melo, and E.F.S. Silva. 2008. Danos visuais e anatômicos causados pelo glyphosate em folhas de Eucalyptus grandis. Planta Daninha 26: 9–16.

    Article  Google Scholar 

  • Valentini, L.C. 2007. Caracterização genética e funcional de α-e β-esterases em cultivares de soja (Glycine max l. merrill) no estado do paraná. Master Dissertation. Maringá: Universidade Estadual de Maringá, Maringá.

  • Walker, C.H., and M.I. Mackness. 1983. Esterases: problems of identification and classification. Biochemical Pharmacology 32: 3265–3269.

    Article  PubMed  CAS  Google Scholar 

  • Zambrano, A.Y., J.R. Demey, and V. González. 2002. Selección in vitro de líneas celulares de caña de azúcar resistentes a glifosato®. Agronomía Tropical 52: 139–160.

    Google Scholar 

  • Zeidler, M. 2000. Electrophoretic analysis of plant isozymes. Acta universitatis palackianae olomucensis facultas rerum naturalium biologica 38: 7–13.

    Google Scholar 

  • Zera, F.S., C.A.M. Azania, A.R. Schiavetto, C.M. Lorenzato, G.B. Freitas, and A.A.P.M. Azania. 2011. Tolerância de mamona (Ricinus Communis) a herbicidas utilizados na cultura da cana-de-açúcar. Nucleus 8: 453–462.

    Article  Google Scholar 

  • Zobiole, L.H.S., J.R. Oliveira, R.S. Kremer, J. Constantin, C.M. Bonato, and A.S. Muniz. 2010. Water use efficiency and photosynthesis of glyphosate-resistant soybean as affected by glyphosate. Pesticide Biochemistry Physiology 97: 182–193.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present research was financed by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP 2010/09016-9) and IAC (Instituto Agronômico de Campinas). R.C. Adriano receive Master fellowship from CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Rossini Pinto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adriano, R.C., Azania, C.A.M., Pinto, L.R. et al. Phenotypic and biochemical responses of sugarcane cultivars to glyphosate application. Sugar Tech 15, 127–135 (2013). https://doi.org/10.1007/s12355-013-0209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-013-0209-x

Keywords

Navigation